SwePub
Sök i LIBRIS databas

  Extended search

hsv:(NATURAL SCIENCES) hsv:(Computer and Information Sciences)
 

Search: hsv:(NATURAL SCIENCES) hsv:(Computer and Information Sciences) > Automatic Spiral An...

  • Memedi, Mevludin,1983-Högskolan Dalarna,Datateknik (author)

Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson's Disease

  • Article/chapterEnglish2015

Publisher, publication year, extent ...

  • 2015-09-17
  • MDPI AG,2015

Numbers

  • LIBRIS-ID:oai:gup.ub.gu.se/225999
  • https://gup.ub.gu.se/publication/225999URI
  • https://doi.org/10.3390/s150923727DOI
  • https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-61015URI
  • http://kipublications.ki.se/Default.aspx?queryparsed=id:132277936URI
  • https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-264357URI
  • https://urn.kb.se/resolve?urn=urn:nbn:se:du-19472URI

Supplementary language notes

  • Language:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Funding Agencies:Nordforce Technology AB  Animech AB   Dalarna University  20130041 Slovenian Research Agency  Slovenian Ministry of Education, Science and Sport  European Regional Development Fund (PARKINSCHECK project)
  • A challenge for the clinical management of advanced Parkinson's disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Sadikov, A.Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia (author)
  • Groznik, V.Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia (author)
  • Zabkar, J.Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia (author)
  • Mozina, M.Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia (author)
  • Bergquist, Filip,1970Gothenburg University,Göteborgs universitet,Institutionen för neurovetenskap och fysiologi, sektionen för farmakologi,Institute of Neuroscience and Physiology, Department of Pharmacology,Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden(Swepub:gu)xberfi (author)
  • Johansson, A.Karolinska Institutet,Neurology, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (author)
  • Haubenberger, D.Clinical Trials Unit, Office of the Clinical Director, NINDS Intramural Research Program, National Institutes of Health, Bethesda MD, USA (author)
  • Nyholm, DagUppsala universitet,Neurologi,Neurology, Neuroscience, Uppsala University, Uppsala, Sweden(Swepub:uu)danyh856 (author)
  • In Pg, Journal Of Neurology Neurosurgery (author)
  • Psychiatry, V. P. (author)
  • Högskolan DalarnaDatateknik (creator_code:org_t)

Related titles

  • In:Sensors: MDPI AG15:9, s. 23727-237441424-8220

Internet link

Find in a library

  • Sensors (Search for host publication in LIBRIS)

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view