SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Reinbothe Thomas)
 

Sökning: WFRF:(Reinbothe Thomas) > Delta-cells and bet...

Delta-cells and beta-cells are electrically coupled and regulate alpha-cell activity via somatostatin

Briant, L. J. B. (författare)
Reinbothe, Thomas, 1981 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för neurovetenskap och fysiologi, sektionen för fysiologi,Institute of Neuroscience and Physiology, Department of Physiology
Spiliotis, I. (författare)
visa fler...
Miranda, Caroline (författare)
Gothenburg University,Göteborgs universitet,Institutionen för neurovetenskap och fysiologi,Institute of Neuroscience and Physiology
Rodriguez, B. (författare)
Rorsman, P. (författare)
visa färre...
 (creator_code:org_t)
2018
2018
Engelska.
Ingår i: Journal of Physiology-London. - 0022-3751. ; 596:2, s. 197-215
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Glucagon, the body's principal hyperglycaemic hormone, is released from alpha-cells of the pancreatic islet. Secretion of this hormone is dysregulated in type 2 diabetes mellitus but the mechanisms controlling secretion are not well understood. Regulation of glucagon secretion by factors secreted by neighbouring beta- and delta-cells (paracrine regulation) have been proposed to be important. In this study, we explored the importance of paracrine regulation by using an optogenetic strategy. Specific light-induced activation of beta-cells in mouse islets expressing the light-gated channelrhodopsin-2 resulted in stimulation of electrical activity in delta-cells but suppression of alpha-cell activity. Activation of the delta-cells was rapid and sensitive to the gap junction inhibitor carbenoxolone, whereas the effect on electrical activity in alpha-cells was blocked by CYN 154806, an antagonist of the somatostatin-2 receptor. These observations indicate that optogenetic activation of the beta-cells propagates to the delta-cells via gap junctions, and the consequential stimulation of somatostatin secretion inhibits alpha-cell electrical activity by a paracrine mechanism. To explore whether this pathway is important for regulating alpha-cell activity and glucagon secretion in human islets, we constructed computational models of human islets. These models had detailed architectures based on human islets and consisted of a collection of >500 alpha-, beta- and delta-cells. Simulations of these models revealed that this gap junctional/paracrine mechanism accounts for up to 23% of the suppression of glucagon secretion by high glucose.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Fysiologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Physiology (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Neurologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Neurology (hsv//eng)

Nyckelord

alpha cell
delta cell
beta cell
Islet cell
computer modelling
electrophysiology
somatostatin
inhibit glucagon-secretion
gap-junction channels
k-atp channels
pancreatic-islets
functional-characterization
insulin-release
glucose
control
mouse
paracrine
receptor
Neurosciences & Neurology

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy