SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Zhou Binbin)
 

Search: WFRF:(Zhou Binbin) > Synergy of orograph...

Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya

Wang, Yan (author)
Yang, Kun (author)
Zhou, Xu (author)
show more...
Chen, Deliang, 1961 (author)
Gothenburg University,Göteborgs universitet,Institutionen för geovetenskaper,Department of Earth Sciences
Lu, Hui (author)
Ouyang, Lin (author)
Chen, Yingying (author)
Lazhu, (author)
Wang, Binbin (author)
show less...
 (creator_code:org_t)
2020-01-02
2020
English.
In: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 54:3-4, s. 1729-40
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Current climate models often have significant wet biases in the Tibetan Plateau and encounter particular difficulties in representing the climatic effect of the Central Himalaya Mountain (CHM), where the gradient of elevation is extremely steep and the terrain is complex. Yet, there were few studies dealing with the issue in the high altitudes of this region. In order to improve climate modeling in this region, a network consisting of 14 rain gauges was set up at elevations >2800 m above sea level along a CHM valley. Numerical experiments with Weather Research and Forecasting model were conducted to investigate the effects of meso- and micro-scale terrain on water vapor transport and precipitation. The control case uses a high horizontal resolution (0.03°) and a Turbulent Orographic Form Drag (TOFD) scheme to resolve the mesoscale terrain and to represent sub-grid microscale terrain effect. The effects of the horizontal resolution and the TOFD scheme were then analyzed through comparisons with sensitivity cases that either use a low horizontal resolution (0.09°) or switch off the TOFD scheme. The results show that the simulations with high horizontal resolution, even without the TOFD scheme, can not only increase the spatial consistency (correlation coefficient 0.84–0.92) between the observed and simulated precipitation, but also considerably reduce the wet bias by more than 250%. Adding the TOFD scheme further reduces the precipitation bias by 50% or so at almost all stations in the CHM. The TOFD scheme reduces precipitation intensity, especially heavy precipitation (>10 mm h−1) over high altitudes of the CHM. Both high horizontal resolution and TOFD enhance the orographic drag to slow down wind; as a result, less water vapor is transported from lowland to the high altitudes of CHM, causing more precipitation at lowland area of the CHM and less at high altitudes of CHM. Therefore, in this highly terrain-complex region, it is crucial to use a high horizontal resolution to depict mesoscale complex terrain and a TOFD scheme to parameterize the drag caused by microscale complex terrain.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view