SwePub
Sök i LIBRIS databas

  Extended search

(LAR1:gu) mspu:(article) lar1:(cth) pers:(Jagers Peter 1941)
 

Search: (LAR1:gu) mspu:(article) lar1:(cth) pers:(Jagers Peter 1941) > On the establishmen...

On the establishment of a mutant

Baker, J. (author)
Monash University
Chigansky, P. (author)
The Hebrew University Of Jerusalem
Jagers, Peter, 1941 (author)
Gothenburg University,Göteborgs universitet,Institutionen för matematiska vetenskaper,Department of Mathematical Sciences,Chalmers tekniska högskola,Chalmers University of Technology
show more...
Klebaner, F. C. (author)
Monash University
show less...
 (creator_code:org_t)
2020-02-26
2020
English.
In: Journal of Mathematical Biology. - : Springer Science and Business Media LLC. - 0303-6812 .- 1432-1416. ; 80, s. 1733-1757
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • How long does it take for an initially advantageous mutant to establish itself in a resident population, and what does the population composition look like then? We approach these questions in the framework of the so called Bare Bones evolution model (Klebaner et al. in J Biol Dyn 5(2):147-162, 2011. https://doi.org/ 10.1080/ 17513758.2010.506041) that provides a simplified approach to the adaptive population dynamics of binary splitting cells. As the mutant population grows, cell division becomes less probable, and it may in fact turn less likely than that of residents. Our analysis rests on the assumption of the process starting from resident populations, with sizes proportional to a large carrying capacity K. Actually, we assume carrying capacities to be a(1)K and a(2)K for the resident and the mutant populations, respectively, and study the dynamics for K -> infinity. We find conditions for the mutant to be successful in establishing itself alongside the resident. The time it takes turns out to be proportional to log K. We introduce the time of establishment through the asymptotic behaviour of the stochastic nonlinear dynamics describing the evolution, and show that it is indeed 1/rho log K, where rho is twice the probability of successful division of the mutant at its appearance. Looking at the composition of the population, at times 1/rho log K + n, n is an element of Z(+), we find that the densities (i.e. sizes relative to carrying capacities) of both populations follow closely the corresponding two dimensional nonlinear deterministic dynamics that starts at a random point. We characterise this random initial condition in terms of the scaling limit of the corresponding dynamics, and the limit of the properly scaled initial binary splitting process of the mutant. The deterministic approximation with random initial condition is in fact valid asymptotically at all times 1/rho log K + n with n is an element of Z.

Subject headings

NATURVETENSKAP  -- Matematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics (hsv//eng)
NATURVETENSKAP  -- Biologi -- Evolutionsbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Evolutionary Biology (hsv//eng)
NATURVETENSKAP  -- Biologi -- Ekologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Ecology (hsv//eng)
NATURVETENSKAP  -- Matematik -- Sannolikhetsteori och statistik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Probability Theory and Statistics (hsv//eng)

Keyword

Evolution models
Stochastic dynamics
Limit theorems
branching-processes
population
Life Sciences & Biomedicine - Other Topics
Mathematical & Computational
Biology
Evolution models

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view