SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Heuzé Céline 1988)
 

Search: WFRF:(Heuzé Céline 1988) > (2021) > Antarctic Bottom Wa...

Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models

Heuzé, Céline, 1988 (author)
Gothenburg University,Göteborgs universitet,Institutionen för geovetenskaper,Department of Earth Sciences
 (creator_code:org_t)
2021-01-13
2021
English.
In: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 17:1, s. 59-90
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Deep and bottom water formation are crucial components of the global ocean circulation, yet they were poorly represented in the previous generation of climate models. We here quantify biases in Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW) formation, properties, transport, and global extent in 35 climate models that participated in the latest Climate Model Intercomparison Project (CMIP6). Several CMIP6 models are correctly forming AABW via shelf processes, but 28 models in the Southern Ocean and all 35 models in the North Atlantic form deep and bottom water via open-ocean deep convection too deeply, too often, and/or over too large an area. Models that convect the least form the most accurate AABW but the least accurate NADW. The four CESM2 models with their overflow parameterisation are among the most accurate models. In the Atlantic, the colder the AABW, the stronger the abyssal overturning at 30 degrees S, and the further north the AABW layer extends. The saltier the NADW, the stronger the Atlantic Meridional Overturning Circulation (AMOC), and the further south the NADW layer extends. In the Indian and Pacific oceans in contrast, the fresher models are the ones which extend the furthest regardless of the strength of their abyssal overturning, most likely because they are also the models with the weakest fronts in the Antarctic Circumpolar Current. There are clear improvements since CMIP5: several CMIP6 models correctly represent or parameterise Antarctic shelf processes, fewer models exhibit Southern Ocean deep convection, more models convect at the right location in the Labrador Sea, bottom density biases are reduced, and abyssal overturning is more realistic. However, more improvements are required, e.g. by generalising the use of overflow parameterisations or by coupling to interactive ice sheet models, before deep and bottom water formation, and hence heat and carbon storage, are represented accurately.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Meteorologi och atmosfärforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Meteorology and Atmospheric Sciences (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Oceanografi, hydrologi och vattenresurser (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Oceanography, Hydrology and Water Resources (hsv//eng)

Keyword

earth system model
southern-ocean
sea-ice
climate sensitivity
convection
version
variability
simulation
transport
coastal
Meteorology & Atmospheric Sciences
Oceanography

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Heuzé, Céline, 1 ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Meteorology and ...
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Oceanography Hyd ...
Articles in the publication
Ocean Science
By the university
University of Gothenburg

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view