SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Walter P.)
 

Search: WFRF:(Walter P.) > (1985-1989) > Ammoxidation of 3-P...

Ammoxidation of 3-Picoline: An Activity and High-Resolution Electron Microscopic Investigation of Vanadium Oxide Catalysts

Andersson, Arne (author)
Lund University,Lunds universitet,Avdelningen för kemiteknik,Institutionen för processteknik och tillämpad biovetenskap,Institutioner vid LTH,Lunds Tekniska Högskola,Division of Chemical Engineering,Department of Process and Life Science Engineering,Departments at LTH,Faculty of Engineering, LTH
Bovin, JO (author)
Walter, P (author)
 (creator_code:org_t)
1986
1986
English.
In: Journal of Catalysis. - 1090-2694. ; 98:1, s. 204-220
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • A V2O5 catalyst was used in the ammoxidation of 3-picoline to nicotinonitrile. It was observed that the selectivity for the formation of CO2 as a function of temperature passed through a minimum. This is explained to be due to the existence of weakly bonded electrophilic oxygen species at low temperatures, and an increasing degradation involving O2− at high temperatures. A comparison of two different V2O5 preparations shows the beneficial effect of the V2O5(010) plane on the formation of nicotinonitrile. The exposure of planes other than the (010) plane as the source of formation of CO2 is discussed by consideration of bond strength values. The activity, selectivity, and composition of the charged V2O5 catalyst were followed as a function of time-on-stream at various temperatures. It was found that the V2O5 phase was reduced in the course of the reaction. V4O9, VO2(B), VO2 (tetragonal), and even more reduced phases were formed depending upon the reaction temperature used. Of the pure oxides, V4O9 was found to be both less active and less selective than V2O5. VO2(B), however, is more active but less selective compared to V2O5. The phases formed were characterized by various methods including high-resolution transmission electron microscopy (HRTEM). This technique made it possible to image the View the MathML source phase boundary for the first time. The general direction of this boundary is parallel to the (301) plane of V2O5. Micrographs of VO2(B) show that the nature of defects formed depends on the reaction temperature. After use at 695 K two types of planar twin lamellae were formed. At a slightly higher temperature partly amorphous defects appeared. The influence on the catalytic reaction of the phase boundaries and defects formed is discussed.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Kemiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Chemical Engineering (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Andersson, Arne
Bovin, JO
Walter, P
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Chemical Enginee ...
Articles in the publication
Journal of Catal ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view