SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Elbakyan Vardan G.)
 

Sökning: WFRF:(Elbakyan Vardan G.) > Gravitoviscous prot...

Gravitoviscous protoplanetary disks with a dust component : I. the importance of the inner sub-au region

Vorobyov, Eduard I. (författare)
Southern Federal University,University of Vienna
Skliarevskii, Aleksandr M. (författare)
Southern Federal University
Elbakyan, Vardan G. (författare)
Lund University,Lunds universitet,Astronomi - Genomgår omorganisation,Institutionen för astronomi och teoretisk fysik - Genomgår omorganisation,Naturvetenskapliga fakulteten,Lund Observatory - Undergoing reorganization,Department of Astronomy and Theoretical Physics - Undergoing reorganization,Faculty of Science,Southern Federal University
visa fler...
Pavlyuchenkov, Yaroslav (författare)
P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Akimkin, Vitaly (författare)
P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Guedel, Manuel (författare)
University of Vienna
visa färre...
 (creator_code:org_t)
2019-07-17
2019
Engelska.
Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Aims. The central region of a circumstellar disk is difficult to resolve in global numerical simulations of collapsing cloud cores, but its effect on the evolution of the entire disk can be significant. Methods. We used numerical hydrodynamics simulations to model the long-term evolution of self-gravitating and viscous circumstellar disks in the thin-disk limit. Simulations start from the gravitational collapse of pre-stellar cores of 0.5-1.0 M and both gaseous and dusty subsystems were considered, including a model for dust growth. The inner unresolved 1.0 au of the disk is replaced with a central smart cell (CSC), a simplified model that simulates physical processes that may occur in this region. Results. We found that the mass transport rate through the CSC has an appreciable effect on the evolution of the entire disk. Models with slow mass transport form more massive and warmer disks, and are more susceptible to gravitational instability and fragmentation, including a newly identified episodic mode of disk fragmentation in the T Tauri phase of disk evolution. Models with slow mass transport through the CSC feature episodic accretion and luminosity bursts in the early evolution, while models with fast transport are characterized by a steadily declining accretion rate with low-amplitude flickering. Dust grows to a larger, decimeter size in the slow transport models and efficiently drifts in the CSC, where it accumulates and reaches the limit where a streaming instability becomes operational. We argue that gravitational instability, together with a streaming instability likely operating in the inner disk regions, constitute two concurrent planet-forming mechanisms, which may explain the observed diversity of exoplanetary orbits. Conclusions. We conclude that sophisticated models of the inner unresolved disk regions should be used when modeling the formation and evolution of gaseous and dusty protoplanetary disks.

Ämnesord

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Nyckelord

Planets and satellites: formation
Protoplanetary disks
Stars: protostars

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy