SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Dorsch Sven)
 

Sökning: WFRF:(Dorsch Sven) > Transport in nanowi...

Transport in nanowire-based quantum dot systems: Heating electrons and confining holes

Dorsch, Sven (författare)
Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Fasta tillståndets fysik,Fysiska institutionen,Institutioner vid LTH,Other operations, LTH,Faculty of Engineering, LTH,Solid State Physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
 (creator_code:org_t)
ISBN 9789180391979
2022
Engelska.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Quantum dots embedded in an electronic circuit allow precise control over the charge transport behaviour of the system: Charge carriers can be individually trapped or precisely shuffled between a series of quantum dots in a strictly sequential manner. This introduces ideal conditions to study fundamental quantum physics and such devices are in the focus of extensive efforts to develop quantum information related applications. This thesis contributes to the development of model systems enabling control of, and abiding by quantum mechanical effects. The aim of the model systems is to search and use advantages compared to devices governed purely by the laws of classical physics.In this thesis, transport phenomena in n- and p-type III-V semiconductor nanowire quantum dot systems are explored. First, the concepts necessary to build an understanding of charge transport across quantum dot systems, namely quantum confinement in nanostructures and Coulomb blockade, are introduced. Next, the principles of transport across single and double quantum dot devices are discussed and various experimental device designs are presented. The experimental work falls into two separate research directions and the thesis includes three published papers, which are put into context and supplemented with additional experimental results.Paper I characterizes the properties of p-type GaSb nanowires to assess the material's applicability for the realization of spin-orbit qubits as fundamental building blocks of solid state quantum computers. Experimentally, g-factors and the spin-orbit energy are determined and fabricational challenges for the realization of serial double quantum dot devices are discussed and overcome.Papers II and III study thermally driven currents in InAs nanowire double quantum dots, where heat is essentially converted to electrical power. Such nanoscale energy harvesters operate in a regime where fluctuations are highly relevant and give insights into fundamental nanothermodynamic concepts. Thermally induced currents in double quantum dot devices are the result of three-terminal phonon-assisted transport or the two-terminal thermoelectric effect. Paper II studies the interplay of the two effects, the relevance of the interdot coupling and the impact of excited states. Paper III develops a versatile device architecture which combines bottom-gating and heating and enables the localized application of heat along the nanowire axis. Such devices provide ideal, controlled conditions for future studies of fundamental nanothermodynamics.

Ämnesord

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Nyckelord

Nanowire
Quantum dot
double quantum dot
Thermoelectric effect
Phonon-assisted transport
GaSb
g-factor
Fysicumarkivet A:2022:Dorsch

Publikations- och innehållstyp

dok (ämneskategori)
vet (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Dorsch, Sven
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Fysik
och Den kondenserade ...
Av lärosätet
Lunds universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy