SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:lup.lub.lu.se:53cea0f1-2c4f-4ad3-906c-c4d88a136c64"
 

Sökning: id:"swepub:oai:lup.lub.lu.se:53cea0f1-2c4f-4ad3-906c-c4d88a136c64" > Planet formation th...

  • Nielsen, JesperUniversity of Copenhagen (författare)

Planet formation throughout the Milky Way : Planet populations in the context of Galactic chemical evolution

  • Artikel/kapitelEngelska2023

Förlag, utgivningsår, omfång ...

  • 2023

Nummerbeteckningar

  • LIBRIS-ID:oai:lup.lub.lu.se:53cea0f1-2c4f-4ad3-906c-c4d88a136c64
  • https://lup.lub.lu.se/record/53cea0f1-2c4f-4ad3-906c-c4d88a136c64URI
  • https://doi.org/10.1051/0004-6361/202346697DOI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:art swepub-publicationtype
  • Ämneskategori:ref swepub-contenttype

Anmärkningar

  • As stellar compositions evolve over time in the Milky Way, so will the resulting planet populations. In order to place planet formation in the context of Galactic chemical evolution, we made use of a large (N = 5325) stellar sample representing the thin and thick discs, defined chemically, and the halo, and we simulated planet formation by pebble accretion around these stars. We built a chemical model of their protoplanetary discs, taking into account the relevant chemical transitions between vapour and refractory minerals, in order to track the resulting compositions of formed planets. We find that the masses of our synthetic planets increase on average with increasing stellar metallicity [Fe/H] and that giant planets and super-Earths are most common around thin-disc (α-poor) stars since these stars have an overall higher budget of solid particles. Giant planets are found to be very rare (≲1%) around thick-disc (α-rich) stars and nearly non-existent around halo stars. This indicates that the planet population is more diverse for more metal-rich stars in the thin disc. Water-rich planets are less common around low-metallicity stars since their low metallicity prohibits efficient growth beyond the water ice line. If we allow water to oxidise iron in the protoplanetary disc, this results in decreasing core mass fractions with increasing [Fe/H]. Excluding iron oxidation from our condensation model instead results in higher core mass fractions, in better agreement with the core-mass fraction of Earth, that increase with increasing [Fe/H]. Our work demonstrates how the Galactic chemical evolution and stellar parameters, such as stellar mass and chemical composition, can shape the resulting planet population.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Gent, Matthew RaymondHeidelberg University,Max Planck Institute for Astronomy (författare)
  • Bergemann, MariaNiels Bohr Institute,Max Planck Institute for Astronomy (författare)
  • Eitner, PhilippMax Planck Institute for Astronomy,Heidelberg University (författare)
  • Johansen, AndersLund University,Lunds universitet,Astrofysik,Fysiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Astrophysics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH,University of Copenhagen,Centre for Star and Planet Formation (StarPlan)(Swepub:lu)astr-arj (författare)
  • University of CopenhagenHeidelberg University (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:Astronomy and Astrophysics6780004-6361

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy