SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Konnov Alexander)
 

Sökning: WFRF:(Konnov Alexander) > Mechanism and rate ...

  • Savchenkova, Anna S.Samara National Research University (författare)

Mechanism and rate constants of the CH2 + CH2CO reactions in triplet and singlet states : A theoretical study

  • Artikel/kapitelEngelska2019

Förlag, utgivningsår, omfång ...

  • 2018-10-09
  • Wiley,2019

Nummerbeteckningar

  • LIBRIS-ID:oai:lup.lub.lu.se:60696aa2-bbf9-4b2a-835e-77cfbceb30dd
  • https://lup.lub.lu.se/record/60696aa2-bbf9-4b2a-835e-77cfbceb30ddURI
  • https://doi.org/10.1002/jcc.25613DOI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:art swepub-publicationtype
  • Ämneskategori:ref swepub-contenttype

Anmärkningar

  • Ab initio and density functional CCSD(T)-F12/cc-pVQZ-f12//B2PLYPD3/6-311G** calculations have been performed to unravel the reaction mechanism of triplet and singlet methylene CH2 with ketene CH2CO. The computed potential energy diagrams and molecular properties have been then utilized in Rice–Ramsperger–Kassel–Marcus-Master Equation (RRKM-ME) calculations of the reaction rate constants and product branching ratios combined with the use of nonadiabatic transition state theory for spin-forbidden triplet-singlet isomerization. The results indicate that the most important channels of the reaction of ketene with triplet methylene lead to the formation of the HCCO + CH3 and C2H4 + CO products, where the former channel is preferable at higher temperatures from 1000 K and above. In the C2H4 + CO product pair, the ethylene molecule can be formed either adiabatically in the triplet electronic state or via triplet-singlet intersystem crossing in the singlet electronic state occurring in the vicinity of the CH2COCH2 intermediate or along the pathway of CO elimination from the initial CH2CH2CO complex. The predominant products of the reaction of ketene with singlet methylene have been shown to be C2H4 + CO. The formation of these products mostly proceeds via a well-skipping mechanism but at high pressures may to some extent involve collisional stabilization of the CH3CHCO and cyclic CH2COCH2 intermediates followed by their thermal unimolecular decomposition. The calculated rate constants at different pressures from 0.01 to 100 atm have been fitted by the modified Arrhenius expressions in the temperature range of 300–3000 K, which are proposed for kinetic modeling of ketene reactions in combustion.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Semenikhin, Alexander S.Samara National Research University (författare)
  • Chechet, Ivan V.Samara National Research University (författare)
  • Matveev, Sergey G.Samara National Research University (författare)
  • Konnov, Alexander A.Lund University,Lunds universitet,Förbränningsfysik,Fysiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Combustion Physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH(Swepub:lu)forb-aek (författare)
  • Mebel, Alexander M.Florida International University,Samara National Research University (författare)
  • Samara National Research UniversityFörbränningsfysik (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:Journal of Computational Chemistry: Wiley40:2, s. 387-3990192-86511096-987X

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy