SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Hofmann Philip)
 

Search: WFRF:(Hofmann Philip) > Exciting H2 Molecul...

Exciting H2 Molecules for Graphene Functionalization

Kyhl, Line (author)
Aarhus University
Bisson, Régis (author)
Aix-Marseille University
Balog, Richard (author)
Aarhus University
show more...
Groves, Michael N. (author)
Aarhus University
Kolsbjerg, Esber Leonhard (author)
Aarhus University
Cassidy, Andrew Martin (author)
Aarhus University
Jœrgensen, Jacob Holm (author)
Aarhus University
Halkjær, Susanne (author)
Aarhus University
Miwa, Jill A. (author)
Aarhus University
Čabo, Antonija Grubišić (author)
Aarhus University
Angot, Thierry (author)
Aix-Marseille University
Hofmann, Philip (author)
Aarhus University
Arman, Alif (author)
Lund University,Lunds universitet,MAX IV-laboratoriet,MAX IV Laboratory
Urpelainen, Samuli (author)
Lund University,Lunds universitet,MAX IV-laboratoriet,MAX IV Laboratory
Lacovig, Paolo (author)
Elettra Sincrotrone Trieste
Bignardi, Luca (author)
Elettra Sincrotrone Trieste
Bluhm, Hendrik (author)
Lawrence Berkeley National Laboratory
Knudsen, Jan (author)
Lund University,Lunds universitet,MAX IV-laboratoriet,Synkrotronljusfysik,Fysiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,MAX IV Laboratory,Synchrotron Radiation Research,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
Hammer, Bjœrk (author)
Aarhus University
Hornekaer, Liv (author)
Aarhus University
show less...
 (creator_code:org_t)
2017-12-18
2017
English.
In: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851.
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy measurements, and density functional theory calculations. The measurements reveal that vibrationally excited H2 molecules dissociatively adsorb on graphene on Ir(111) resulting in nanopatterned hydrogen functionalization structures. Calculations demonstrate that the presence of the Ir surface below the graphene lowers the H2 dissociative adsorption barrier and allows for the adsorption reaction at energies well below the dissociation threshold of the H–H bond. The first reacting H2 molecule must contain considerable vibrational energy to overcome the dissociative adsorption barrier. However, this initial adsorption further activates the surface resulting in reduced barriers for dissociative adsorption of subsequent H2 molecules. This enables functionalization by H2 molecules with lower vibrational energy, yielding an avalanche effect for the hydrogenation reaction. These results provide an example of a catalytically active graphene-coated surface and additionally set the stage for a re-interpretation of previous experimental work involving elevated H2 background gas pressures in the presence of hot filaments.

Subject headings

NATURVETENSKAP  -- Fysik -- Atom- och molekylfysik och optik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Atom and Molecular Physics and Optics (hsv//eng)
NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Keyword

graphene, vibrational excitation, nanostructured functionalization, band gap engineering, molecular hydrogen, catalysis

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

  • ACS Nano (Search for host publication in LIBRIS)

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view