SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Havenith George)
 

Search: WFRF:(Havenith George) > (2010-2014) > Evaporative Cooling...

Evaporative Cooling: effective latent heat of evaporation in relation to evaporation distance from the skin

Havenith, George (author)
Bröde, Peter (author)
Emiel, den Hartog (author)
show more...
Kuklane, Kalev (author)
Lund University,Lunds universitet,Ergonomi och aerosolteknologi,Institutionen för designvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Ergonomics and Aerosol Technology,Department of Design Sciences,Departments at LTH,Faculty of Engineering, LTH
Holmér, Ingvar (author)
Lund University,Lunds universitet,Ergonomi och aerosolteknologi,Institutionen för designvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Ergonomics and Aerosol Technology,Department of Design Sciences,Departments at LTH,Faculty of Engineering, LTH
Rossi, Rene M (author)
Richards, Mark (author)
Farnworth, Brian (author)
Wang, Xiaoxin (author)
show less...
 (creator_code:org_t)
2013
2013
English.
In: Journal of Applied Physiology. - 1522-1601. ; 114:6, s. 778-785
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available which has found little use in recent literature. In this experiment a thermal manikin (MTNW, Seattle) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used and different numbers of layers were used. Tests took place in 20ºC, 0.5 m.s-1 at different humidities and were performed both dry and with a wet layer allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin λeff is close to the theoretical value (2430J.g-1), but starts to drop when more clothing is worn, e.g. by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base-layer) increasing towards 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Fysiologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Physiology (hsv//eng)

Keyword

sweat Latent heat of evaporation evaporative cooling efficiency protective clothing wicking indirect calorimetry

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view