SwePub
Sök i LIBRIS databas

  Extended search

L773:1476 1122
 

Search: L773:1476 1122 > Tuning electrochemi...

Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis

Baeumer, Christoph (author)
RWTH Aachen University,Stanford Linear Accelerator Center (SLAC),Stanford University
Li, Jiang (author)
Stanford Linear Accelerator Center (SLAC)
Lu, Qiyang (author)
Westlake University,Advanced Light Source, Berkeley,Stanford University,Stanford Linear Accelerator Center (SLAC)
show more...
Liang, Allen Yu Lun (author)
Stanford Linear Accelerator Center (SLAC),Stanford University
Jin, Lei (author)
Jülich Research Centre
Martins, Henrique Perin (author)
Advanced Light Source, Berkeley
Duchoň, Tomáš (author)
Jülich Research Centre
Glöß, Maria (author)
Jülich Research Centre,Leibniz Institute for Surface Modification
Gericke, Sabrina M. (author)
Lund University,Lunds universitet,Förbränningsfysik,Fysiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Combustion Physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH,Lawrence Berkeley National Laboratory
Wohlgemuth, Marcus A. (author)
Jülich Research Centre
Giesen, Margret (author)
Jülich Research Centre
Penn, Emily E. (author)
Stanford University
Dittmann, Regina (author)
Jülich Research Centre
Gunkel, Felix (author)
Jülich Research Centre
Waser, Rainer (author)
Jülich Research Centre,RWTH Aachen University
Bajdich, Michal (author)
Stanford Linear Accelerator Center (SLAC)
Nemšák, Slavomír (author)
Jülich Research Centre,Advanced Light Source, Berkeley
Mefford, J. Tyler (author)
Stanford Linear Accelerator Center (SLAC),Stanford University
Chueh, William C. (author)
Stanford Linear Accelerator Center (SLAC),Stanford University
show less...
 (creator_code:org_t)
2021-01-11
2021
English 9 s.
In: Nature Materials. - : Springer Science and Business Media LLC. - 1476-1122 .- 1476-4660. ; 20:5, s. 674-682
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Structure–activity relationships built on descriptors of bulk and bulk-terminated surfaces are the basis for the rational design of electrocatalysts. However, electrochemically driven surface transformations complicate the identification of such descriptors. Here we demonstrate how the as-prepared surface composition of (001)-terminated LaNiO3 epitaxial thin films dictates the surface transformation and the electrocatalytic activity for the oxygen evolution reaction. Specifically, the Ni termination (in the as-prepared state) is considerably more active than the La termination, with overpotential differences of up to 150 mV. A combined electrochemical, spectroscopic and density-functional theory investigation suggests that this activity trend originates from a thermodynamically stable, disordered NiO2 surface layer that forms during the operation of Ni-terminated surfaces, which is kinetically inaccessible when starting with a La termination. Our work thus demonstrates the tunability of surface transformation pathways by modifying a single atomic layer at the surface and that active surface phases only develop for select as-synthesized surface terminations.

Subject headings

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view