SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Francois B.)
 

Search: WFRF:(Francois B.) > (2010-2014) > KAP1 controls endog...

KAP1 controls endogenous retroviruses in embryonic stem cells

Rowe, Helen M. (author)
Swiss Federal Institute of Technology
Jakobsson, Johan (author)
Lund University,Lunds universitet,Molekylär neurogenetik,Forskargrupper vid Lunds universitet,Wallenberg Neurocentrum, Lund,Medicinska fakulteten,Molecular Neurogenetics,Lund University Research Groups,Wallenberg Neuroscience Centre, Lund,Faculty of Medicine,Swiss Federal Institute of Technology
Mesnard, Daniel (author)
Swiss Federal Institute of Technology
show more...
Rougemont, Jacques (author)
Swiss Federal Institute of Technology
Reynard, Severine (author)
Swiss Federal Institute of Technology
Aktas, Tugce (author)
European Molecular Biology Laboratory Heidelberg
Maillard, Pierre V. (author)
Swiss Federal Institute of Technology
Layard-Liesching, Hillary (author)
Swiss Federal Institute of Technology
Verp, Sonia (author)
Swiss Federal Institute of Technology
Marquis, Julien (author)
Swiss Federal Institute of Technology
Spitz, Francois (author)
European Molecular Biology Laboratory Heidelberg
Constam, Daniel B. (author)
Swiss Federal Institute of Technology
Trono, Didier (author)
Swiss Federal Institute of Technology
show less...
 (creator_code:org_t)
Springer Science and Business Media LLC, 2010
2010
English.
In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 463, s. 40-237
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • More than forty per cent of the mammalian genome is derived from retroelements, of which about one-quarter are endogenous retroviruses (ERVs). Some are still active, notably in mice the highly polymorphic early transposon (ETn)/MusD and intracisternal A-type particles (IAP). ERVs are transcriptionally silenced during early embryogenesis by histone and DNA methylation (and reviewed in ref. 7), although the initiators of this process, which is essential to protect genome integrity, remain largely unknown. KAP1 (KRAB-associated protein 1, also known as tripartite motif-containing protein 28, TRIM28) represses genes by recruiting the histone methyltransferase SETDB1, heterochromatin protein 1 (HP1) and the NuRD histone deacetylase complex, but few of its physiological targets are known. Two lines of evidence suggest that KAP1-mediated repression could contribute to the control of ERVs: first, KAP1 can trigger permanent gene silencing during early embryogenesis, and second, a KAP1 complex silences the retrovirus murine leukaemia virus in embryonic cells. Consistent with this hypothesis, here we show that KAP1 deletion leads to a marked upregulation of a range of ERVs, in particular IAP elements, in mouse embryonic stem (ES) cells and in early embryos. We further demonstrate that KAP1 acts synergistically with DNA methylation to silence IAP elements, and that it is enriched at the 5' untranslated region (5'UTR) of IAP genomes, where KAP1 deletion leads to the loss of histone 3 lysine 9 trimethylation (H3K9me3), a hallmark of KAP1-mediated repression. Correspondingly, IAP 5'UTR sequences can impose in cis KAP1-dependent repression on a heterologous promoter in ES cells. Our results establish that KAP1 controls endogenous retroelements during early embryonic development.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Cell- och molekylärbiologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Cell and Molecular Biology (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

  • Nature (Search for host publication in LIBRIS)

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view