SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:lup.lub.lu.se:852ce1a4-ab63-4e74-baaf-096533901aba"
 

Search: id:"swepub:oai:lup.lub.lu.se:852ce1a4-ab63-4e74-baaf-096533901aba" > Quasi-static contra...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Lambrechts, M.Lund University,Lunds universitet,Astronomi - Genomgår omorganisation,Institutionen för astronomi och teoretisk fysik - Genomgår omorganisation,Naturvetenskapliga fakulteten,Lund Observatory - Undergoing reorganization,Department of Astronomy and Theoretical Physics - Undergoing reorganization,Faculty of Science (author)

Quasi-static contraction during runaway gas accretion onto giant planets

  • Article/chapterEnglish2019

Publisher, publication year, extent ...

  • 2019-09-24
  • EDP Sciences,2019

Numbers

  • LIBRIS-ID:oai:lup.lub.lu.se:852ce1a4-ab63-4e74-baaf-096533901aba
  • https://lup.lub.lu.se/record/852ce1a4-ab63-4e74-baaf-096533901abaURI
  • https://doi.org/10.1051/0004-6361/201834413DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:art swepub-publicationtype
  • Subject category:ref swepub-contenttype

Notes

  • Gas-giant planets, like Jupiter and Saturn, acquire massive gaseous envelopes during the approximately 3 Myr-long lifetimes of protoplanetary discs. In the core accretion scenario, the formation of a solid core of around ten Earth masses triggers a phase of rapid gas accretion. Previous 3D grid-based hydrodynamical simulations found that runaway gas accretion rates correspond to approximately 10 to 100 Jupiter masses per Myr. Such high accretion rates would result in all planets with larger than ten Earth-mass cores to form Jupiter-like planets, which is in clear contrast to the ice giants in the Solar System and the observed exoplanet population. In this work, we used 3D hydrodynamical simulations, that include radiative transfer, to model the growth of the envelope on planets with different masses. We find that gas flows rapidly through the outer part of the envelope, but this flow does not drive accretion. Instead, gas accretion is the result of quasi-static contraction of the inner envelope, which can be orders of magnitude smaller than the mass flow through the outer atmosphere. For planets smaller than Saturn, we measured moderate gas accretion rates that are below one Jupiter mass per Myr. Higher mass planets, however, accrete up to ten times faster and do not reveal a self-driven mechanism that can halt gas accretion. Therefore, the reason for the final masses of Saturn and Jupiter remains difficult to understand, unless their completion coincided with the dissipation of the solar nebula.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Lega, E.Côte d'Azur Observatory,University of Côte d'Azur (author)
  • Nelson, R. P.Queen Mary University (author)
  • Crida, A.Institut Universitaire de France,Côte d'Azur Observatory,University of Côte d'Azur (author)
  • Morbidelli, A.University of Côte d'Azur,Côte d'Azur Observatory (author)
  • Astronomi - Genomgår omorganisationInstitutionen för astronomi och teoretisk fysik - Genomgår omorganisation (creator_code:org_t)

Related titles

  • In:Astronomy and Astrophysics: EDP Sciences6300004-63611432-0746

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Lambrechts, M.
Lega, E.
Nelson, R. P.
Crida, A.
Morbidelli, A.
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Physical Science ...
and Astronomy Astrop ...
Articles in the publication
Astronomy and As ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view