SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Zacchi Guido)
 

Search: WFRF:(Zacchi Guido) > Recirculation of pr...

Recirculation of process streams in fuel ethanol production from softwood based on simultaneous saccharification and fermentation

Alkasrawi, Malek (author)
Lund University,Lunds universitet,Centrum för analys och syntes,Kemiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Centre for Analysis and Synthesis,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
Galbe, Mats (author)
Lund University,Lunds universitet,Avdelningen för kemiteknik,Institutionen för processteknik och tillämpad biovetenskap,Institutioner vid LTH,Lunds Tekniska Högskola,Division of Chemical Engineering,Department of Process and Life Science Engineering,Departments at LTH,Faculty of Engineering, LTH
Zacchi, Guido (author)
Lund University,Lunds universitet,Avdelningen för kemiteknik,Institutionen för processteknik och tillämpad biovetenskap,Institutioner vid LTH,Lunds Tekniska Högskola,Division of Chemical Engineering,Department of Process and Life Science Engineering,Departments at LTH,Faculty of Engineering, LTH
 (creator_code:org_t)
2002
2002
English.
In: Applied Biochemistry and Biotechnology. - 0273-2289 .- 1559-0291. ; 98, s. 849-861
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • The effect of process stream recirculation on ethanol production from steam- pretreated softwood based on simultaneous saccharification and fermentation (SSF) was investigated for two process configurations. In the first configuration, a part of the stillage stream after distillation was recycled and, in the second configuration, the liquid after SSF was recycled. The aim was to minimize the energy consumption in the distillation of the fermentation broth and in the evaporation of the stillage, as well as the use of fresh water. However, recirculation leads to an increased concentration of nonvolatiles in the first configuration, and of both volatiles and nonvolatiles in the second configuration. These substances might be inhibitory to the enzymes and the yeast in SSF. When 60% of the fresh water was replaced by stillage, the ethanol yield and the productivity were the same as for the configuration without recirculation. The ethanol production cost was reduced by 17%. In the second configuration, up to 40% of the fresh water could be replaced without affecting the final ethanol yield, although the initial ethanol productivity decreased. The ethanol production cost was reduced by 12%. At higher degrees of recirculation,fermentation was clearly inhibited, resulting in a decrease in ethanol yield while hydrolysis seemed unaffected.

Subject headings

NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)

Keyword

recirculation
simultaneous saccharification and fermentation
softwood
inhibition
ethanol

Publication and Content Type

kon (subject category)
ref (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Alkasrawi, Malek
Galbe, Mats
Zacchi, Guido
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Biochemistry and ...
Articles in the publication
Applied Biochemi ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view