SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Rosati Bernadette)
 

Search: WFRF:(Rosati Bernadette) > New Particle Format...

New Particle Formation and Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals

Rosati, Bernadette (author)
Aarhus University,University of Vienna
Christiansen, Sigurd (author)
Aarhus University
Wollesen De Jonge, Robin (author)
Aarhus University
show more...
Roldin, Pontus (author)
Lund University,Lunds universitet,MERGE: ModElling the Regional and Global Earth system,Centrum för miljö- och klimatvetenskap (CEC),Naturvetenskapliga fakulteten,Kärnfysik,Fysiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Centre for Environmental and Climate Science (CEC),Faculty of Science,Nuclear physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
Jensen, Mads Mørk (author)
Aarhus University
Wang, Kai (author)
Aarhus University
Moosakutty, Shamjad P. (author)
Aarhus University,King Abdullah University of Science and Technology
Thomsen, Ditte (author)
Aarhus University
Salomonsen, Camilla (author)
Aarhus University
Hyttinen, Noora (author)
University of Eastern Finland,University of Oulu
Elm, Jonas (author)
Aarhus University
Feilberg, Anders (author)
Aarhus University
Glasius, Marianne (author)
Aarhus University
Bilde, Merete (author)
Aarhus University
show less...
 (creator_code:org_t)
2021-03-25
2021
English.
In: ACS Earth and Space Chemistry. - : American Chemical Society (ACS). - 2472-3452. ; 5:4, s. 801-811
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Dimethyl sulfide (DMS) is produced by plankton in oceans and constitutes the largest natural emission of sulfur to the atmosphere. In this work, we examine new particle formation from the primary pathway of oxidation of gas-phase DMS by OH radicals. We particularly focus on particle growth and mass yield as studied experimentally under dry conditions using the atmospheric simulation chamber AURA. Experimentally, we show that aerosol mass yields from oxidation of 50-200 ppb of DMS are low (2-7%) and that particle growth rates (8.2-24.4 nm/h) are comparable with ambient observations. An HR-ToF-AMS was calibrated using methanesulfonic acid (MSA) to account for fragments distributed across both the organic and sulfate fragmentation table. AMS-derived chemical compositions revealed that MSA was always more dominant than sulfate in the secondary aerosols formed. Modeling using the Aerosol Dynamics, gas- and particle-phase chemistry kinetic multilayer model for laboratory CHAMber studies (ADCHAM) indicates that the Master Chemical Mechanism gas-phase chemistry alone underestimates experimentally observed particle formation and that DMS multiphase and autoxidation chemistry is needed to explain observations. Based on quantum chemical calculations, we conclude that particle formation from DMS oxidation in the ambient atmosphere will most likely be driven by mixed sulfuric acid/MSA clusters clustering with both amines and ammonia.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Meteorologi och atmosfärforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Meteorology and Atmospheric Sciences (hsv//eng)

Keyword

atmospheric simulation chamber
dimethyl sulfide
growth rate
methanesulfonic acid
nucleation
photo-oxidation

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view