SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Wagner Darcy E.)
 

Search: WFRF:(Wagner Darcy E.) > (2021) > A Biomimetic, Copol...

A Biomimetic, Copolymeric Membrane for Cell-Stretch Experiments with Pulmonary Epithelial Cells at the Air-Liquid Interface

Doryab, Ali (author)
German Center for Lung Research (DZL),Helmholtz Zentrum München
Taskin, Mehmet Berat (author)
Julius Maximilian University of Würzburg
Stahlhut, Philipp (author)
Julius Maximilian University of Würzburg
show more...
Schröppel, Andreas (author)
German Center for Lung Research (DZL),Helmholtz Zentrum München
Wagner, Darcy E. (author)
Lund University,Lunds universitet,Lungbioengineering och regeneration,Forskargrupper vid Lunds universitet,WCMM- Wallenberg center för molekylär medicinsk forskning,Medicinska fakulteten,Lung Bioengineering and Regeneration,Lund University Research Groups,WCMM-Wallenberg Centre for Molecular Medicine,Faculty of Medicine
Groll, Jürgen (author)
Julius Maximilian University of Würzburg
Schmid, Otmar (author)
Helmholtz Zentrum München,German Center for Lung Research (DZL)
show less...
 (creator_code:org_t)
2020-12-11
2021
English.
In: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 31:10
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Chronic respiratory diseases are among the leading causes of death worldwide, but only symptomatic therapies are available for terminal illness. This in part reflects a lack of biomimetic in vitro models that can imitate the complex environment and physiology of the lung. Here, a copolymeric membrane consisting of poly(ε-)caprolactone and gelatin with tunable properties, resembling the main characteristics of the alveolar basement membrane is introduced. The thin bioinspired membrane (0.5 μm) is stretchable (up to 25% linear strain) with appropriate surface wettability and porosity for culturing lung epithelial cells under air–liquid interface conditions. The unique biphasic concept of this membrane provides optimum characteristics for initial cell growth (phase I) and then switch to biomimetic properties for cyclic cell-stretch experiments (phase II). It is showed that physiologic cyclic mechanical stretch improves formation of F-actin cytoskeleton filaments and tight junctions while non-physiologic over-stretch induces cell apoptosis, activates inflammatory response (IL-8), and impairs epithelial barrier integrity. It is also demonstrated that cyclic physiologic stretch can enhance the cellular uptake of nanoparticles. Since this membrane offers considerable advantages over currently used membranes, it may lead the way to more biomimetic in vitro models of the lung for translation of in vitro response studies into clinical outcome.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Lungmedicin och allergi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Respiratory Medicine and Allergy (hsv//eng)

Keyword

alveolar-capillary barrier
cyclic mechanical stretch
hybrid polymers
in vitro cell-stretch model
tunable ultra-thin biphasic membrane

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view