SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Momeni Niloofar)
 

Sökning: WFRF:(Momeni Niloofar) > CAFS : Cost-Aware F...

  • Momeni, NiloofarLund University,Lunds universitet,Matematisk statistik,Matematikcentrum,Institutioner vid LTH,Lunds Tekniska Högskola,LTH profilområde: AI och digitalisering,LTH profilområden,Mathematical Statistics,Centre for Mathematical Sciences,Departments at LTH,Faculty of Engineering, LTH,LTH Profile Area: AI and Digitalization,LTH Profile areas,Faculty of Engineering, LTH,Swiss Federal Institute of Technology (författare)

CAFS : Cost-Aware Features Selection Method for Multimodal Stress Monitoring on Wearable Devices

  • Artikel/kapitelEngelska2022

Förlag, utgivningsår, omfång ...

  • 2022
  • 13 s.

Nummerbeteckningar

  • LIBRIS-ID:oai:lup.lub.lu.se:ae40aea8-3a17-4ed9-b975-c5029ce8e999
  • https://lup.lub.lu.se/record/ae40aea8-3a17-4ed9-b975-c5029ce8e999URI
  • https://doi.org/10.1109/TBME.2021.3113593DOI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:art swepub-publicationtype
  • Ämneskategori:ref swepub-contenttype

Anmärkningar

  • Objective: Today, stress monitoring on wearable devices is challenged by the tension between high-detection accuracy and battery lifetime driven by multimodal data acquisition and processing. Limited research has addressed the classification cost on multimodal wearable sensors, particularly when the features are cost-dependent. Thus, we design a Cost-Aware Feature Selection (CAFS) methodology that trades-off between prediction-power and energy-cost for multimodal stress monitoring. Methods: CAFS selects the most important features under different energy-constraints, which allows us to obtain energy-scalable stress monitoring models. We further propose a self-aware stress monitoring method that intelligently switches among the energy-scalable models, reducing energy consumption. Results: Using CAFS methodology on experimental data and simulation, we reduce the energy-cost of the stress model designed without energy constraints up to 94.37%. We obtain 90.98% and 95.74% as the best accuracy and confidence values, respectively, on unseen data, outperforming state-of-the-art studies. Analyzing our interpretable and energy-scalable models, we showed that simple models using only heart rate (HR) or skin conductance level (SCL), confidently predict acute stress for HR>93.30BPM and non-stress for SCL< 6.42 μS, but, outside these values, a multimodal model using respiration and pulse wave's features is needed for confident classification. Our self-aware acute stress monitoring proposal saves 10x energy and provides 88.72% of accuracy on unseen data. Conclusion: We propose a comprehensive solution for the cost-aware acute stress monitoring design addressing the problem of selecting an optimized feature subset considering their cost-dependency and cost-constraints. Significant: Our design framework enables long-term and confident acute stress monitoring on wearable devices.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Valdés, Adriana ArzaSwiss Federal Institute of Technology (författare)
  • Rodrigues, JoãoSwiss Federal Institute of Technology (författare)
  • Sandi, CarmenSwiss Federal Institute of Technology (författare)
  • Atienza, DavidSwiss Federal Institute of Technology (författare)
  • Matematisk statistikMatematikcentrum (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:IEEE Transactions on Biomedical Engineering69:3, s. 1072-10840018-9294

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy