SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Ausmees Nora)
 

Search: WFRF:(Ausmees Nora) > Cell-biological stu...

Cell-biological studies of osmotic shock response in Streptomyces spp

Fuchino, Katsuya (author)
Lund University,Lunds universitet,Biologiska institutionen,Naturvetenskapliga fakulteten,Department of Biology,Faculty of Science
Flärdh, Klas (author)
Lund University,Lunds universitet,Biologiska institutionen,Naturvetenskapliga fakulteten,Department of Biology,Faculty of Science
Dyson, Paul (author)
Swansea University
show more...
Ausmees, Nora (author)
Lund University,Lunds universitet,Biologiska institutionen,Naturvetenskapliga fakulteten,Department of Biology,Faculty of Science
show less...
 (creator_code:org_t)
2017
2017
English.
In: Journal of Bacteriology. - 0021-9193. ; 199:1
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Most bacteria are likely to face osmotic challenges, but there is yet much to learn about how such environmental changes affect the architecture of bacterial cells. Here, we report a cell-biological study in model organisms of the genus Streptomyces, which are actinobacteria that grow in a highly polarized fashion to form branching hyphae. The characteristic apical growth of Streptomyces hyphae is orchestrated by protein assemblies, called polarisomes, which contain coiled-coil proteins DivIVA and Scy, and recruit cell wall synthesis complexes and the stressbearing cytoskeleton of FilP to the tip regions of the hyphae. We monitored cell growth and cell-architectural changes by time-lapse microscopy in osmotic upshift experiments. Hyperosmotic shock caused arrest of growth, loss of turgor, and hypercondensation of chromosomes. The recovery period was protracted, presumably due to the dehydrated state of the cytoplasm, before hyphae could restore their turgor and start to grow again. In most hyphae, this regrowth did not take place at the original hyphal tips. Instead, cell polarity was reprogrammed, and polarisomes were redistributed to new sites, leading to the emergence of multiple lateral branches from which growth occurred. Factors known to regulate the branching pattern of Streptomyces hyphae, such as the serine/threonine kinase AfsK and Scy, were not involved in reprogramming of cell polarity, indicating that different mechanisms may act under different environmental conditions to control hyphal branching. Our observations of hyphal morphology during the stress response indicate that turgor and sufficient hydration of cytoplasm are required for Streptomyces tip growth.

Subject headings

NATURVETENSKAP  -- Biologi -- Cellbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Cell Biology (hsv//eng)

Keyword

Apical growth
Bacterial cytoskeleton
Osmotic stress response
Streptomyces
Turgor

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Fuchino, Katsuya
Flärdh, Klas
Dyson, Paul
Ausmees, Nora
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Cell Biology
Articles in the publication
Journal of Bacte ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view