SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Blum Jurgen)
 

Search: WFRF:(Blum Jurgen) > The role of pebble ...

The role of pebble fragmentation in planetesimal formation II. Numerical simulations

Jansson, Karl Wahlberg (author)
Lund University,Lunds universitet,Astronomi - Har omorganiserats,Institutionen för astronomi och teoretisk fysik - Har omorganiserats,Naturvetenskapliga fakulteten,Lund Observatory - Has been reorganised,Department of Astronomy and Theoretical Physics - Has been reorganised,Faculty of Science
Johansen, Anders (author)
Lund University,Lunds universitet,Astronomi - Har omorganiserats,Institutionen för astronomi och teoretisk fysik - Har omorganiserats,Naturvetenskapliga fakulteten,Lund Observatory - Has been reorganised,Department of Astronomy and Theoretical Physics - Has been reorganised,Faculty of Science
Syed, Mohtashim Bukhari (author)
Technical University of Braunschweig
show more...
Blum, Jürgen (author)
Technical University of Braunschweig
show less...
 (creator_code:org_t)
2017-01-20
2017
English.
In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 835:1
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Some scenarios for planetesimal formation go through a phase of collapse of gravitationally bound clouds of millimeter- to centimeter-size pebbles. Such clouds can form, for example, through the streaming instability in protoplanetary disks. We model the collapse process with a statistical model to obtain the internal structure of planetesimals with solid radii between 10 and 1000 km. During the collapse, pebbles collide, and depending on their relative speeds, collisions have different outcomes. A mixture of particle sizes inside a planetesimal leads to better packing capabilities and higher densities. In this paper we apply results from new laboratory experiments of dust aggregate collisions (presented in a companion paper) to model collision outcomes. We find that the internal structure of a planetesimal is strongly dependent on both its mass and the applied fragmentation model. Low-mass planetesimals have no/few fragmenting pebble collisions in the collapse phase and end up as porous pebble piles. The number of fragmenting collisions increases with increasing cloud mass, resulting in wider particle size distributions and higher density. The collapse is nevertheless "cold" in the sense that collision speeds are damped by the high collision frequency. This ensures that a significant fraction of large pebbles survive the collapse in all but the most massive clouds. Our results are in broad agreement with the observed increase in density of Kuiper Belt objects with increasing size, as exemplified by the recent characterization of the highly porous comet 67P/Churyumov-Gerasimenko.

Subject headings

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Keyword

methods: analytical
methods: numerical
planets and satellites: formation

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Jansson, Karl Wa ...
Johansen, Anders
Syed, Mohtashim ...
Blum, Jürgen
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Physical Science ...
and Astronomy Astrop ...
Articles in the publication
Astrophysical Jo ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view