SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Mkrtchian S.)
 

Search: WFRF:(Mkrtchian S.) > (2020-2022) > Surgical Trauma in ...

  • Mkrtchian, SKarolinska Institutet (author)

Surgical Trauma in Mice Modifies the Content of Circulating Extracellular Vesicles

  • Article/chapterEnglish2022

Publisher, publication year, extent ...

  • 2022-01-18
  • Frontiers Media SA,2022

Numbers

  • LIBRIS-ID:oai:prod.swepub.kib.ki.se:148739804
  • http://kipublications.ki.se/Default.aspx?queryparsed=id:148739804URI
  • https://doi.org/10.3389/fimmu.2021.824696DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Surgical interventions rapidly trigger a cascade of molecular, cellular, and neural signaling responses that ultimately reach remote organs, including the brain. Using a mouse model of orthopedic surgery, we have previously demonstrated hippocampal metabolic, structural, and functional changes associated with cognitive impairment. However, the nature of the underlying signals responsible for such periphery-to-brain communication remains hitherto elusive. Here we present the first exploratory study that tests the hypothesis of extracellular vesicles (EVs) as potential mediators carrying information from the injured tissue to the distal organs including the brain. The primary goal was to investigate whether the cargo of circulating EVs after surgery can undergo quantitative changes that could potentially trigger phenotypic modifications in the target tissues. EVs were isolated from the serum of the mice subjected to a tibia surgery after 6, 24, and 72 h, and the proteome and miRNAome were investigated using mass spectrometry and RNA-seq approaches. We found substantial differential expression of proteins and miRNAs starting at 6 h post-surgery and peaking at 24 h. Interestingly, one of the up-regulated proteins at 24 h was α-synuclein, a pathogenic hallmark of certain neurodegenerative syndromes. Analysis of miRNA target mRNA and corresponding biological pathways indicate the potential of post-surgery EVs to modify the extracellular matrix of the recipient cells and regulate metabolic processes including fatty acid metabolism. We conclude that surgery alters the cargo of circulating EVs in the blood, and our results suggest EVs as potential systemic signal carriers mediating remote effects of surgery on the brain.

Added entries (persons, corporate bodies, meetings, titles ...)

  • Ebberyd, AKarolinska Institutet (author)
  • Veerman, RE (author)
  • Mendez-Lago, M (author)
  • Gabrielsson, SKarolinska Institutet (author)
  • Eriksson, LIKarolinska Institutet (author)
  • Gomez-Galan, M (author)
  • Karolinska Institutet (creator_code:org_t)

Related titles

  • In:Frontiers in immunology: Frontiers Media SA12, s. 824696-1664-3224

Internet link

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view