SwePub
Sök i LIBRIS databas

  Extended search

L773:1939 4586
 

Search: L773:1939 4586 > (2000-2004) > ago1 and dcr1, two ...

ago1 and dcr1, two core components of the RNA interference pathway, functionally diverge from rdp1 in regulating cell cycle events in Schizosaccharomyces pombe

Carmichael, JB (author)
Provost, P (author)
Ekwall, K (author)
Karolinska Institutet
show more...
Hobman, TC (author)
show less...
 (creator_code:org_t)
American Society for Cell Biology (ASCB), 2004
2004
English.
In: Molecular biology of the cell. - : American Society for Cell Biology (ASCB). - 1059-1524 .- 1939-4586. ; 15:3, s. 1425-1435
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • In the fission yeast Schizosaccharomyces pombe, three genes that function in the RNA interference (RNAi) pathway, ago1+, dcr1+, and rdp1+, have recently been shown to be important for timely formation of heterochromatin and accurate chromosome segregation. In the present study, we present evidence that null mutants for ago1+and dcr1+but not rdp1+, exhibit abnormal cytokinesis, cell cycle arrest deficiencies, and mating defects. Subsequent analyses showed that ago1+and dcr1+are required for regulated hyperphosphorylation of Cdc2 when encountering genotoxic insults. Because rdp1+is dispensable for this process, the functions of ago1+and dcr1+in this pathway are presumably independent of their roles in RNAi-mediated heterochromatin formation and chromosome segregation. This was further supported by the finding that ago1+is a multicopy suppressor of the S-M checkpoint deficiency and cytokinesis defects associated with loss of Dcr1 function, but not for the chromosome segregation defects of this mutant. Accordingly, we conclude that Dcr1-dependent production of small interfering RNAs is not required for enactment and/or maintenance of certain cell cycle checkpoints and that Ago1 and Dcr1 functionally diverge from Rdp1 to control cell cycle events in fission yeast. Finally, exogenous expression of hGERp95/EIF2C2/hAgo2, a human Ago1 homolog implicated in posttranscriptional gene silencing, compensated for the loss of ago1+function in S. pombe. This suggests that PPD proteins may also be important for regulation of cell cycle events in higher eukaryotes.

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Carmichael, JB
Provost, P
Ekwall, K
Hobman, TC
Articles in the publication
Molecular biolog ...
By the university
Karolinska Institutet

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view