SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:prod.swepub.kib.ki.se:1941495"
 

Search: id:"swepub:oai:prod.swepub.kib.ki.se:1941495" > Characterization of...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Krook, AKarolinska Institutet (author)

Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients

  • Article/chapterEnglish2000

Publisher, publication year, extent ...

  • American Diabetes Association,2000

Numbers

  • LIBRIS-ID:oai:prod.swepub.kib.ki.se:1941495
  • http://kipublications.ki.se/Default.aspx?queryparsed=id:1941495URI
  • https://doi.org/10.2337/diabetes.49.2.284DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • We characterized metabolic and mitogenic signaling pathways in isolated skeletal muscle from well-matched type 2 diabetic and control subjects. Time course studies of the insulin receptor, insulin receptor substrate (IRS)-1/2, and phosphatidylinositol (PI) 3-kinase revealed that signal transduction through this pathway was engaged between 4 and 40 min. Insulin-stimulated (0.6-60 nmol/l) tyrosine phosphorylation of the insulin receptor beta-subunit, mitogen-activated protein (MAP) kinase phosphorylation, and glycogen synthase activity were not altered in type 2 diabetic subjects. In contrast, insulin-stimulated tyrosine phosphorylation of IRS-1 and anti-phosphotyrosine-associated PI 3-kinase activity were reduced 40-55% in type 2 diabetic subjects at high insulin concentrations (2.4 and 60 nmol/l, respectively). Impaired glucose transport activity was noted at all insulin concentrations (0.6-60 nmol/l). Aberrant protein expression cannot account for these insulin-signaling defects because expression of insulin receptor, IRS-1, IRS-2, MAP kinase, or glycogen synthase was similar between type 2 diabetic and control subjects. In skeletal muscle from type 2 diabetic subjects, IRS-1 phosphorylation, PI 3-kinase activity, and glucose transport activity were impaired, whereas insulin receptor tyrosine phosphorylation, MAP kinase phosphorylation, and glycogen synthase activity were normal. Impaired insulin signal transduction in skeletal muscle from type 2 diabetic patients may partly account for reduced insulin-stimulated glucose transport; however, additional defects are likely to play a role.

Added entries (persons, corporate bodies, meetings, titles ...)

  • Bjornholm, MKarolinska Institutet (author)
  • Galuska, DKarolinska Institutet (author)
  • Jiang, XJ (author)
  • Fahlman, R (author)
  • Myers, MG (author)
  • Wallberg-Henriksson, HKarolinska Institutet (author)
  • Zierath, JRKarolinska Institutet (author)
  • Karolinska Institutet (creator_code:org_t)

Related titles

  • In:Diabetes: American Diabetes Association49:2, s. 284-2920012-17971939-327X

Internet link

Find in a library

  • Diabetes (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view