SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Teusink B.)
 

Sökning: WFRF:(Teusink B.) > (2021) > Proteome constraint...

Proteome constraints reveal targets for improving microbial fitness in nutrient-rich environments

Chen, Yu, 1990 (författare)
Novo Nordisk Fonden,Novo Nordisk Foundation,Chalmers tekniska högskola,Chalmers University of Technology
van Pelt-KleinJan, Eunice (författare)
Vrije Universiteit Amsterdam (VU)
van Olst, Berdien (författare)
Wageningen University and Research,Vrije Universiteit Amsterdam (VU)
visa fler...
Douwenga, Sieze (författare)
Wageningen University and Research,Vrije Universiteit Amsterdam (VU)
Boeren, Sjef (författare)
Wageningen University and Research
Bachmann, Herwig (författare)
Vrije Universiteit Amsterdam (VU)
Molenaar, Douwe (författare)
Vrije Universiteit Amsterdam (VU)
Nielsen, Jens B, 1962 (författare)
Novo Nordisk Fonden,Novo Nordisk Foundation,Chalmers tekniska högskola,Chalmers University of Technology,BioInnovation Institute (BII),Danmarks Tekniske Universitet,Technical University of Denmark
Teusink, B. (författare)
Vrije Universiteit Amsterdam (VU)
visa färre...
 (creator_code:org_t)
2021-04-06
2021
Engelska.
Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 17:4
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Cells adapt to different conditions via gene expression that tunes metabolism for maximal fitness. Constraints on cellular proteome may limit such expression strategies and introduce trade-offs. Resource allocation under proteome constraints has explained regulatory strategies in bacteria. It is unclear, however, to what extent these constraints can predict evolutionary changes, especially for microorganisms that evolved under nutrient-rich conditions, i.e., multiple available nitrogen sources, such as Lactococcus lactis. Here, we present a proteome-constrained genome-scale metabolic model of L. lactis (pcLactis) to interpret growth on multiple nutrients. Through integration of proteomics and flux data, in glucose-limited chemostats, the model predicted glucose and arginine uptake as dominant constraints at low growth rates. Indeed, glucose and arginine catabolism were found upregulated in evolved mutants. At high growth rates, pcLactis correctly predicted the observed shutdown of arginine catabolism because limited proteome availability favored lactate for ATP production. Thus, our model-based analysis is able to identify and explain the proteome constraints that limit growth rate in nutrient-rich environments and thus form targets of fitness improvement.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Bioinformatik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Bioinformatics (hsv//eng)
NATURVETENSKAP  -- Biologi -- Bioinformatik och systembiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Bioinformatics and Systems Biology (hsv//eng)

Nyckelord

proteome constraint
Lactococcus lactis
ccpA
laboratory evolution
metabolic modeling

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy