SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Lundbladh Anders 1964)
 

Search: WFRF:(Lundbladh Anders 1964) > Multipoint aerodyna...

Multipoint aerodynamic design of ultrashort nacelles for ultrahigh-bypass-ratio engines

Tavares Silva, Vinícius, 1991 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Lundbladh, Anders, 1964 (author)
GKN Aerospace Sweden AB
Petit, Olivier, 1980 (author)
Luftfartsverket (LFV),Air Navigation Services of Sweden (LFV)
show more...
Xisto, Carlos, 1984 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2022
2022
English.
In: Journal of Propulsion and Power. - 1533-3876 .- 0748-4658. ; 38:4, s. 541-558
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • This paper presents a newly developed methodology for multipoint aerodynamic design of ultrashort nacelles for ultrahigh-bypass-ratio turbofan engines. An integrated aerodynamic framework, based on parametric geometry generation and flowfield solution via three-dimensional Reynolds-averaged Navier-Stokes equations, was built and used for designing several ultrashort nacelle shapes and to evaluate their aerodynamic performance. An approach for modeling the inlet-fan coupling is presented and validated. A design strategy is introduced, and various test cases are evaluated under the following critical operating conditions: midcruise, low speed/high angle of attack, and pure crosswind. The major design parameters are highlighted and their influence in the flowfield is discussed in detail for all the chosen flight conditions. Performance was evaluated by assessing inlet flow distortion and by bookkeeping of thrust and drag. The framework has proven to be suitable for designing high-performance nacelles capable of operating under critical flight conditions, without flow separation or high levels of distortion. Drooping the inlet by 4 deg is shown to reduce the drag at cruise by 1.9%, which also has a large beneficial impact on internal lip separation at high-incidence conditions. Furthermore, crosswind was identified as the most severe of the conditions, requiring a drastic reshaping of the nacelle to avoid internal lip separation. Two final nacelle designs were compared: the first allowed inlet separation under a 90 deg crosswind condition, whereas the second was reshaped to be separation-free under all operating conditions. Reshaping to avoid separation has increased drag by 5.1% at cruise.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Rymd- och flygteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Aerospace Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view