SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Thulin Anders)
 

Search: WFRF:(Thulin Anders) > (2010-2014) > First and Second La...

First and Second Law Analysis of Future Aircraft Engines

Grönstedt, Tomas, 1970 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Irannezhad, Mohammad, 1978 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Lei, Xu, 1979 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Thulin, Oskar, 1987 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Lundbladh, Anders, 1964 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2013-11-19
2014
English.
In: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 136:3
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • An optimal baseline turbofan cycle designed for a performance level expected to be available around year 2050 is established. Detailed performance data are given in take-off, top of climb, and cruise to support the analysis. The losses are analyzed, based on a combined use of the first and second law of thermodynamics, in order to establish a basis for a discussion on future radical engine concepts and to quantify loss levels of very high performance engines. In light of the performance of the future baseline engine, three radical cycles designed to reduce the observed major loss sources are introduced. The combined use of a first and second law analysis of an open rotor engine, an intercooled recuperated engine, and an engine working with a pulse detonation combustion core is presented. In the past, virtually no attention has been paid to the systematic quantification of the irreversibility rates of such radical concepts. Previous research on this topic has concentrated on the analysis of the turbojet and the turbofan engine. In the developed framework, the irreversibility rates are quantified through the calculation of the exergy destruction per unit time. A striking strength of the analysis is that it establishes a common currency for comparing losses originating from very different physical sources of irreversibility. This substantially reduces the complexity of analyzing and comparing losses in aero engines. In particular, the analysis sheds new light on how the intercooled recuperated engine establishes its performance benefits.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Rymd- och flygteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Aerospace Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Farkostteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Vehicle Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view