SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Koppram Rakesh 1986)
 

Search: WFRF:(Koppram Rakesh 1986) > The Presence of Pre...

The Presence of Pretreated Lignocellulosic Solids from Birch during Saccharomyces cerevisiae Fermentations Leads to Increased Tolerance to Inhibitors - A Proteomic Study of the Effects

Koppram, Rakesh, 1986 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Mapelli, Valeria, 1978 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Albers, Eva, 1966 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Olsson, Lisbeth, 1963 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2016-02-05
2016
English.
In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 11:2
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The fermentation performance of Saccharomyces cerevisiae in the cellulose to ethanol conversion process is largely influenced by the components of pretreated biomass. The insoluble solids in pretreated biomass predominantly constitute cellulose, lignin, and -to a lesser extent-hemicellulose. It is important to understand the effects of water-insoluble solids (WIS) on yeast cell physiology and metabolism for the overall process optimization. In the presence of synthetic lignocellulosic inhibitors, we observed a reduced lag phase and enhanced volumetric ethanol productivity by S. cerevisiae CEN. PK 113-7D when the minimal medium was supplemented with WIS of pretreated birch or spruce and glucose as the carbon source. To investigate the underlying molecular reasons for the effects of WIS, we studied the response of WIS at the proteome level in yeast cells in the presence of acetic acid as an inhibitor. Comparisons were made with cells grown in the presence of acetic acid but without WIS in the medium. Altogether, 729 proteins were detected and quantified, of which 246 proteins were significantly up-regulated and 274 proteins were significantly down-regulated with a fold change >= 1.2 in the presence of WIS compared to absence of WIS. The cells in the presence of WIS up-regulated several proteins related to cell wall, glycolysis, electron transport chain, oxidative stress response, oxygen and radical detoxification and unfolded protein response; and down-regulated most proteins related to biosynthetic pathways including amino acid, purine, isoprenoid biosynthesis, aminoacyl-tRNA synthetases and pentose phosphate pathway. Overall, the identified differentially regulated proteins may indicate that the likelihood of increased ATP generation in the presence of WIS was used to defend against acetic acid stress at the expense of reduced biomass formation. Although, comparative proteomics of cells with and without WIS in the acetic acid containing medium revealed numerous changes, a direct effect of WIS on cellular physiology remains to be investigated.

Subject headings

NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)
NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)

Keyword

cellulase
anaerobic xylose fermentation
expression
acetic-acid
alcoholic fermentation
biomass
strain
pathway
ethanol
yeast

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

  • PLoS ONE (Search for host publication in LIBRIS)

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view