SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Chen Bin Bin)
 

Search: WFRF:(Chen Bin Bin) > Cooperative simulta...

Cooperative simultaneous inversion of satellite-based real-time PM 2.5 and ozone levels using an improved deep learning model with attention mechanism

Yan, Xing (author)
Beijing Normal University
Zuo, Chen (author)
Beijing Normal University
Li, Zhanqing (author)
University of Maryland
show more...
Chen, Hans, 1988 (author)
Chalmers tekniska högskola,Chalmers University of Technology,Lunds universitet,Lund University
Jiang, Yize (author)
Beijing Normal University
He, Bin (author)
Beijing Normal University
Liu, Huiming (author)
Chen, Jiayi (author)
Beijing Normal University
Shi, Wenzhong (author)
Hong Kong Polytechnic University
show less...
 (creator_code:org_t)
Elsevier BV, 2023
2023
English.
In: Environmental Pollution. - : Elsevier BV. - 0269-7491 .- 1873-6424. ; 327
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Ground-level fine particulate matter (PM2.5) and ozone (O3) are air pollutants that can pose severe health risks. Surface PM2.5 and O3 concentrations can be monitored from satellites, but most retrieval methods retrieve PM2.5 or O3 separately and disregard the shared information between the two air pollutants, for example due to common emission sources. Using surface observations across China spanning 2014–2021, we found a strong relationship between PM2.5 and O3 with distinct spatiotemporal characteristics. Thus, in this study, we propose a new deep learning model called the Simultaneous Ozone and PM2.5 inversion deep neural Network (SOPiNet), which allows for daily real-time monitoring and full coverage of PM2.5 and O3 simultaneously at a spatial resolution of 5 km. SOPiNet employs the multi-head attention mechanism to better capture the temporal variations in PM2.5 and O3 based on previous days’ conditions. Applying SOPiNet to MODIS data over China in 2022, using 2019–2021 to construct the network, we found that simultaneous retrievals of PM2.5 and O3 improved the performance compared with retrieving them independently: the temporal R2 increased from 0.66 to 0.72 for PM2.5, and from 0.79 to 0.82 for O3. The results suggest that near-real time satellite-based air quality monitoring can be improved by simultaneous retrieval of different but related pollutants. The codes of SOPiNet and its user guide are freely available online at https://github.com/RegiusQuant/ESIDLM.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Telekommunikation (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Telecommunications (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Geofysik (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geophysics (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Oceanografi, hydrologi och vattenresurser (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Oceanography, Hydrology and Water Resources (hsv//eng)

Keyword

Ozone
Deep learning model
PM 2.5
Satellite
Real-time

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view