SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:research.chalmers.se:353adf6d-1bf7-4d0e-8d16-af0ec4bf4f94"
 

Sökning: onr:"swepub:oai:research.chalmers.se:353adf6d-1bf7-4d0e-8d16-af0ec4bf4f94" > Roadmap on transfor...

Roadmap on transformation optics

McCall, Martin (författare)
Imperial College of Science, Technology and Medicine,Imperial Coll London, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England.,Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA.,Purdue Univ, Birck Nanotechnol Ctr, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA.;Purdue Univ, Purdue Quantum Ctr, W Lafayette, IN 47907 USA.
Pendry, John B. (författare)
Imperial College of Science, Technology and Medicine,Imperial Coll London, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England.
Galdi, Vincenzo (författare)
Universita degli Studi del Sannio,University of Sannio,Univ Sannio, Dept Engn, Fields & Waves Lab, I-82100 Benevento, Italy.
visa fler...
Lai, Yun (författare)
Nanjing University,Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China.;Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China.
Horsley, S. A. R. (författare)
University of Exeter,Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, Devon, England.
Li, Jensen (författare)
University of Birmingham,Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
Zhu, Jian (författare)
University of Birmingham,Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
Mitchell-Thomas, Rhiannon C. (författare)
University of Exeter,Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, Devon, England.
Quevedo-Teruel, Oscar (författare)
KTH
Tassin, Philippe, 1982 (författare)
Chalmers tekniska högskola,Chalmers University of Technology,Chalmers Univ, Dept Phys, SE-41296 Gothenburg, Sweden.
Ginis, Vincent (författare)
Vrije Universiteit Brüssel (VUB),Vrije Universiteit Brussel (VUB),Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium.
Martini, Enrica (författare)
Università degli Studi di Siena,University of Siena,Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy.
Minatti, Gabriele (författare)
Università degli Studi di Siena,University of Siena,Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy.
Maci, Stefano (författare)
Università degli Studi di Siena,University of Siena,Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy.
Ebrahimpouri, Mahsa (författare)
KTH
Hao, Yang (författare)
Queen Mary University of London,Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4FZ, England.
Kinsler, Paul (författare)
Lancaster University,Univ Lancaster, Phys Dept, Lancaster LA1 4YB, England.
Gratus, Jonathan (författare)
Daresbury Laboratory,Lancaster University,Univ Lancaster, Phys Dept, Lancaster LA1 4YB, England.;Sci Tech Daresbury, Cockcroft Inst, Daresbury WA4 4AD, England.
Lukens, Joseph M. (författare)
Oak Ridge National Laboratory
Weiner, Andrew M. (författare)
Purdue University,Karlsruhe Inst Technol, Inst Angew Phys, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany.
Leonhardt, Ulf (författare)
Weizmann Institute of Science,Weizmann Inst Sci, Phys Complex Syst, IL-7610001 Rehovot, Israel.
Smolyaninov, Igor I. (författare)
University of Maryland,Univ Maryland, Inst Syst Res, College Pk, MD 20742 USA.
Smolyaninova, Vera N. (författare)
Towson University,Towson Univ, Dept Phys Astron & Geosci, Towson, MD 21252 USA.
Thompson, Robert T. (författare)
Karlsruher Institut für Technologie (KIT),Karlsruhe Institute of Technology (KIT),Karlsruhe Inst Technol, Inst Angew Phys, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany.
Wegener, Martin (författare)
Karlsruher Institut für Technologie (KIT),Karlsruhe Institute of Technology (KIT)
Kadic, Muamer (författare)
Karlsruher Institut für Technologie (KIT),Karlsruhe Institute of Technology (KIT),Karlsruhe Inst Technol, Inst Angew Phys, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany.
Cummer, Steven A. (författare)
Duke University,Duke Univ, Elect & Comp Engn, POB 90291, Durham, NC 27708 USA.
visa färre...
Imperial College of Science, Technology and Medicine Imperial Coll London, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England (creator_code:org_t)
2018-05-22
2018
Engelska.
Ingår i: Journal of Optics. - : IOP Publishing. - 2040-8978 .- 2040-8986. ; 20:6
  • Forskningsöversikt (refereegranskat)
Abstract Ämnesord
Stäng  
  • Transformation optics asks, using Maxwell's equations, what kind of electromagnetic medium recreates some smooth deformation of space? The guiding principle is Einstein's principle of covariance: that any physical theory must take the same form in any coordinate system. This requirement fixes very precisely the required electromagnetic medium. The impact of this insight cannot be overestimated. Many practitioners were used to thinking that only a few analytic solutions to Maxwell's equations existed, such as the monochromatic plane wave in a homogeneous, isotropic medium. At a stroke, transformation optics increases that landscape from 'few' to 'infinity', and to each of the infinitude of analytic solutions dreamt up by the researcher, there corresponds an electromagnetic medium capable of reproducing that solution precisely. The most striking example is the electromagnetic cloak, thought to be an unreachable dream of science fiction writers, but realised in the laboratory a few months after the papers proposing the possibility were published. But the practical challenges are considerable, requiring meta-media that are at once electrically and magnetically inhomogeneous and anisotropic. How far have we come since the first demonstrations over a decade ago? And what does the future hold? If the wizardry of perfect macroscopic optical invisibility still eludes us in practice, then what compromises still enable us to create interesting, useful, devices? While three-dimensional (3D) cloaking remains a significant technical challenge, much progress has been made in two dimensions. Carpet cloaking, wherein an object is hidden under a surface that appears optically flat, relaxes the constraints of extreme electromagnetic parameters. Surface wave cloaking guides sub-wavelength surface waves, making uneven surfaces appear flat. Two dimensions is also the setting in which conformal and complex coordinate transformations are realisable, and the possibilities in this restricted domain do not appear to have been exhausted yet. Beyond cloaking, the enhanced electromagnetic landscape provided by transformation optics has shown how fully analytic solutions can be found to a number of physical scenarios such as plasmonic systems used in electron energy loss spectroscopy and cathodoluminescence. Are there further fields to be enriched? A new twist to transformation optics was the extension to the spacetime domain. By applying transformations to spacetime, rather than just space, it was shown that events rather than objects could be hidden from view; transformation optics had provided a means of effectively redacting events from history. The hype quickly settled into serious nonlinear optical experiments that demonstrated the soundness of the idea, and it is now possible to consider the practical implications, particularly in optical signal processing, of having an 'interrupt-without-interrupt' facility that the so-called temporal cloak provides. Inevitable issues of dispersion in actual systems have only begun to be addressed. Now that time is included in the programme of transformation optics, it is natural to ask what role ideas from general relativity can play in shaping the future of transformation optics. Indeed, one of the earliest papers on transformation optics was provocatively titled 'General Relativity in Electrical Engineering'. The answer that curvature does not enter directly into transformation optics merely encourages us to speculate on the role of transformation optics in defining laboratory analogues. Quite why Maxwell's theory defines a 'perfect' transformation theory, while other areas of physics such as acoustics are not apparently quite so amenable, is a deep question whose precise, mathematical answer will help inform us of the extent to which similar ideas can be extended to other fields. The contributors to this Roadmap, who are all renowned practitioners or inventors of transformation optics, will give their perspectives into the field's status and future development.

Ämnesord

NATURVETENSKAP  -- Fysik -- Atom- och molekylfysik och optik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Atom and Molecular Physics and Optics (hsv//eng)
NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)
NATURVETENSKAP  -- Matematik -- Matematisk analys (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Mathematical Analysis (hsv//eng)

Nyckelord

transformation optics
spacetime cloaking
spatial dispersion
antennas
spatial cloaking
cloaking
metamaterials

Publikations- och innehållstyp

for (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy