SwePub
Sök i LIBRIS databas

  Extended search

L773:1573 9686 OR L773:0090 6964
 

Search: L773:1573 9686 OR L773:0090 6964 > Experimental Valida...

Experimental Validation of an ITAP Numerical Model and the Effect of Implant Stem Stiffness on Bone Strain Energy

Ahmed, Kirstin, 1974 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Pendegrass, Catherine (author)
University College London (UCL)
Briggs, Tim (author)
show more...
Aston, William (author)
Moazen, Merhan (author)
University College London (UCL)
Greene, Richard (author)
Blunn, Gordon (author)
University of Portsmouth
show less...
 (creator_code:org_t)
2020-01-23
2020
English.
In: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 1573-9686 .- 0090-6964.
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The Intraosseous Transcutaneous Amputation Prosthesis (ITAP) offers transfemoral amputees an ambulatory method potentially reducing soft tissue complications seen with socket and stump devices. This study validated a finite element (in silico) model based on an ITAP design and investigated implant stem stiffness influence on periprosthetic femoral bone strain. Results showed good agreement in the validation of the in silico model against the in vitro results using uniaxial strain gauges and Digital Image Correlation (DIC). Using Strain Energy Density (SED) thresholds as the stimulus for adaptive bone remodelling, the validated model illustrated that: (a) bone apposition increased and resorption decreased with increasing implant stem flexibility in early stance; (b) bone apposition decreased (mean change = − 9.8%) and resorption increased (mean change = 20.3%) from distal to proximal in most stem stiffness models in early stance. By engineering the flow of force through the implant/bone (e.g. by changing material properties) these results demonstrate how periprosthetic bone remodelling, thus aseptic loosening, can be managed. This paper finds that future implant designs should be optimised for bone strain under a variety of relevant loading conditions using finite element models to maximise the chances of clinical success.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Biomaterialvetenskap (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Biomaterials Science (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Ortopedi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Orthopaedics (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view