SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Wackermann J)
 

Search: WFRF:(Wackermann J) > Intergranular Oxida...

Intergranular Oxidation Effects During Dwell-Time Fatigue of High-Strength Superalloys

Krupp, Ulrich, 1968 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Wackermann, K. (author)
Fraunhofer-Institut fur Werkstoffmechanik
Christ, H. J. (author)
Universität Siegen,University of Siegen
show more...
Hörnqvist Colliander, Magnus, 1979 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Stiller, Krystyna Marta, 1947 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2017-01-07
2017
English.
In: Oxidation of Metals. - : Springer Science and Business Media LLC. - 1573-4889 .- 0030-770X. ; 88:1 (SI), s. 3-14
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The present paper summarizes experimental work to identify the mechanisms of dwell-time cracking during service operation of polycrystalline nickelbase superalloys, such as Alloy 718 and AD730. By means of crack growth monitoring during various kinds of cyclic loading in vacuum and in air using the potential drop technique, it was shown that the combination of sustained tensile stress, load reversal, and oxidizing atmosphere leads to an increase in the crackpropagation rate by orders of magnitude, as compared to cyclic reference tests without dwell time and/or under vacuum conditions. By careful metallographic and theoretical analysis, the embrittling effect was attributed to stress-induced oxygen diffusion ahead of the intergranular crack tip followed by decohesion in a nanometerscale and had been termed ‘‘dynamic embrittlement.’’ More recently, atom probe tomography of the near-crack tip region revealed that the damage zone consists of Cr-rich transition oxides rather than elemental oxygen. This is in qualitative agreement with TGA measurements on Alloy 718 specimens without mechanical loading, which shows that crack propagation velocities of 50 lm/s do not allow massive Cr2O3 or NiO scale formation. By means of a quantitative analysis of the fracture surface, it became evident that grain-boundary attack depends on the grainboundarycharacter. This observation was supported by four-point bending experiments on grain-boundary-engineered samples with a high fraction of coincident site lattice boundaries and bicrystalline samples with well-defined grain-boundary misorientation relationships with respect to the loading axis. Taking the experimental results into account, semiquantitative modeling concepts have been developed to correlate crack propagation rates with the oxygen grain-boundary diffusivity, the local microstructure, and the mechanical stress states. These concepts are discussed in terms to adapt grain size and precipitate microstructure of polycrystalline superalloys.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Krupp, Ulrich, 1 ...
Wackermann, K.
Christ, H. J.
Hörnqvist Collia ...
Stiller, Krystyn ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Materials Engine ...
Articles in the publication
Oxidation of Met ...
By the university
Chalmers University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view