SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Leitl F.)
 

Sökning: WFRF:(Leitl F.) > Spontaneous Formati...

Spontaneous Formation and Rearrangement of Artificial Lipid Nanotube Networks as a Bottom-Up Model for Endoplasmic Reticulum

Koksal, Elif Senem (författare)
Universitetet i Oslo,University of Oslo
Belletati, Patricia F. (författare)
Universitetet i Oslo,University of Oslo
Reint, Ganna (författare)
Universitetet i Oslo,University of Oslo
visa fler...
Olsson, Ragni (författare)
Universitetet i Oslo,University of Oslo
Leitl, Kira D. (författare)
Universitetet i Oslo,University of Oslo
Kantarci, Ilayda (författare)
Universitetet i Oslo,University of Oslo
Gözen, Irep, 1980 (författare)
Universitetet i Oslo,University of Oslo,Chalmers tekniska högskola,Chalmers University of Technology
visa färre...
 (creator_code:org_t)
2019-01-22
2019
Engelska.
Ingår i: Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; 2019:143
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • We present a convenient method to form a bottom-up structural organelle model for the endoplasmic reticulum (ER). The model consists of highly dense lipidic nanotubes that are, in terms of morphology and dynamics, reminiscent of ER. The networks are derived from phospholipid double bilayer membrane patches adhering to a transparent Al2O3 substrate. The adhesion is mediated by Ca2+ in the ambient buffer. Subsequent depletion of Ca2+ by means of BAPTA/EDTA causes retraction of the membrane, resulting in spontaneous lipid nanotube network formation. The method only comprises phospholipids and microfabricated surfaces for simple formation of an ER model and does not require the addition of proteins or chemical energy (e.g., GTP or ATP). In contrast to the 3D morphology of the cellular endoplasmic reticulum, the model is two-dimensional (albeit the nanotube dimensions, geometry, structure, and dynamics are maintained). This unique in vitro ER model consists of only a few components, is easy to construct, and can be observed under a light microscope. The resulting structure can be further decorated for additional functionality, such as the addition of ER-associated proteins or particles to study transport phenomena among the tubes. The artificial networks described here are suitable structural models for the cellular ER, whose unique characteristic morphology has been shown to be related to its biological function, whereas details regarding formation of the tubular domain and rearrangements within are still not completely understood. We note that this method uses Al2O3 thin-film-coated microscopy coverslips, which are commercially available but require special orders. Therefore, it is advisable to have access to a microfabrication facility for preparation.

Ämnesord

NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biofysik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biophysics (hsv//eng)

Nyckelord

Bioengineering
phospholipid nanotube
lipid nanotube network
thin film deposition
Issue 143
double lipid bilayer
Endoplasmic reticulum
aluminum oxide

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy