SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Kahnt J)
 

Search: WFRF:(Kahnt J) > Temperature Depende...

Temperature Dependence of Charge Separation and Recombination in Porphyrin Oligomer-Fullerene Donor-Acceptor Systems

Kahnt, Axel, 1980 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Kärnbratt, Joakim, 1982 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Esdaile, L. J. (author)
University Of Oxford
show more...
Hutin, M. (author)
University Of Oxford
Sawada, K. (author)
University Of Oxford
Anderson, Harry L. (author)
University Of Oxford
Albinsson, Bo, 1963 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2011-06-06
2011
English.
In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 133:25, s. 9863-9871
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Electron-transfer reactions are fundamental to many practical devices, but because of their complexity, it is often very difficult to interpret measurements done on the complete device. Therefore, studies of model systems are crucial. Here the rates of charge separation and recombination in donor acceptor systems consisting of a series of butadiyne-linked porphyrin oligomers (n = 1-4, 6) appended to C(60) were investigated. At room temperature, excitation of the porphyrin oligomer led to fast (5-25 ps) electron transfer to C(60) followed by slower (200-650 ps) recombination. The temperature dependence of the charge-separation reaction revealed a complex process for the longer oligomers, in which a combination of (i) direct charge separation and (4) migration of excitation energy along the oligomer followed by charge separation explained the observed fluorescence decay kinetics. The energy migration is controlled by the temperature-dependent conformational dynamics of the longer oligomers and thereby limits the quantum yield for charge separation. Charge recombination was also studied as a function of temperature through measurements of femtosecond transient absorption. The temperature dependence of the electron-transfer reactions could be successfully modeled using the Marcus equation through optimization of the electronic coupling (V) and the reorganization energy (lambda). For the charge-separation rate, all of the donor-acceptor systems could be successfully described by a common electronic coupling, supporting a model in which energy migration is followed by charge separation. In this respect, the C(60)-appended porphyrin oligomers are suitable model systems for practical charge-separation devices such as bulk-heterojunction solar cells, where conformational disorder strongly influences the electron-transfer reactions and performance of the device.

Subject headings

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Keyword

dynamics
walled
photosynthesis
bacterial
excited-state
dyads
photophysical properties
photoinduced electron-transfer
c-60
energy
photosynthetic reaction centers
carbon nanotubes

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view