SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Andersson Karin 1952)
 

Sökning: WFRF:(Andersson Karin 1952) > (2020-2022) > Experimental invest...

Experimental investigation and modeling of a reciprocating piston expander for waste heat recovery from a truck engine

Rijpkema, Jelmer Johannes, 1982 (författare)
Chalmers tekniska högskola,Chalmers University of Technology,Chalmers Univ Technol, Gothenburg, Sweden.
Thantla, Sandhya (författare)
KTH,Förbränningsmotorteknik,Stockholm, Sweden.,Kungliga Tekniska Högskolan (KTH),Royal Institute of Technology (KTH)
Fridh, Jens (författare)
KTH,Kraft- och värmeteknologi,Stockholm, Sweden.,Kungliga Tekniska Högskolan (KTH),Royal Institute of Technology (KTH)
visa fler...
Andersson, Sven B, 1952 (författare)
Chalmers tekniska högskola,Chalmers University of Technology,Chalmers Univ Technol, Gothenburg, Sweden.
Munch, Karin, 1954 (författare)
Chalmers tekniska högskola,Chalmers University of Technology,Chalmers Univ Technol, Gothenburg, Sweden.
visa färre...
Chalmers tekniska högskola Chalmers Univ Technol, Gothenburg, Sweden (creator_code:org_t)
Elsevier BV, 2021
2021
Engelska.
Ingår i: Applied Thermal Engineering. - : Elsevier BV. - 1359-4311 .- 1873-5606. ; 186
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Waste heat recovery using an (organic) Rankine cycle has the capacity to significantly increase the efficiency of heavy-duty engines and thereby reduce fuel consumption and CO2 emissions. This paper evaluates a reciprocating piston expander used in a Rankine cycle for truck waste heat recovery by quantifying its performance on the basis of experimental results and simulations. The experimental results were obtained using a setup consisting of a 12.8 L heavy-duty Diesel engine connected to a Rankine cycle with water and are used to calibrate a semi-empirical expander model. At an engine power between 75 and 151 kW, this system recovered between 0.1 and 3 kW, resulting in an expander filling factor between 0.5 and 2.5, and a shaft isentropic effectiveness between 0.05 and 0.5. The calibrated model indicated that the heat loss (16%), mechanical loss (6–25%), pressure drop (13–42%), and leakage (25–75%) all contributed significantly to the expander performance loss. A simulation study with acetone, cyclopentane, ethanol, methanol, and R1233zd(E), showed that a change of working fluid significantly impacts the expander performance, with the filling factor varying between 0.5 and 2.2 and the effectiveness between 0.01 and 0.5, depending on the working fluid, expander speed, and pressure ratio. The results of the optimization of the built-in volume ratio and inlet valve timing during a typical long haul driving cycle showed that acetone and R1233zd(E) provided the highest available power around 3 kW absolute, or 2.2% relative to the engine. The main contributions of this paper are the presentation of experimental results of an engine coupled to a Rankine cycle, and the quantification of performance losses and the effect of working fluid variation using an adapted semi-empirical expander model, which allows for a selection of the working fluid and geometrical modifications giving optimal performance during a long haul driving cycle.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Annan maskinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Other Mechanical Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Marin teknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Marine Engineering (hsv//eng)

Nyckelord

Waste heat recovery
Internal combustion engine
Reciprocating piston expander
Semi-empirical model
Organic Rankine cycle (ORC)

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy