SwePub
Sök i LIBRIS databas

  Utökad sökning

hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Naturresursteknik) hsv:(Annan naturresursteknik)
 

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Naturresursteknik) hsv:(Annan naturresursteknik) > (2020-2024) > Climate resilient i...

Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology

Perera, Amarasinghage Tharindu Dasun (författare)
Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa),Swiss Federal Laboratories for Materials Science and Technology (Empa),Swiss Federal Laboratories for Materials Science and Technology
Javanroodi, Kavan, 1988 (författare)
Chalmers University of Technology,Swiss Federal Institute of Technology
Nik, Vahid, 1979 (författare)
Chalmers University of Technology,Lund University,Lunds universitet,Avdelningen för Byggnadsfysik,Institutionen för bygg- och miljöteknologi,Institutioner vid LTH,Lunds Tekniska Högskola,Division of Building Physics,Department of Building and Environmental Technology,Departments at LTH,Faculty of Engineering, LTH,Queensland University of Technology
 (creator_code:org_t)
Elsevier BV, 2021
2021
Engelska.
Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 285
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Co-optimization of urban morphology and distributed energy systems is key to curb energy consumption and optimally exploit renewable energy in cities. Currently available optimization techniques focus on either buildings or energy systems, mostly neglecting the impact of their interactions, which limits the renewable energy integration and robustness of the energy infrastructure; particularly in extreme weather conditions. To move beyond the current state-of-the-art, this study proposes a novel methodology to optimize urban energy systems as interconnected urban infrastructures affected by urban morphology. A set of urban morphologies representing twenty distinct neighborhoods is generated based on fifteen influencing parameters. The energy performance of each urban morphology is assessed and optimized for typical and extreme warm and cold weather datasets in three time periods from 2010 to 2039, 2040 to 2069, and 2070 to 2099 for Athens, Greece. Pareto optimization is conducted to generate an optimal energy system and urban morphology. The results show that a thus optimized urban morphology can reduce the levelized cost for energy infrastructure by up to 30%. The study reveals further that the current building form and urban density of the modelled neighborhoods will lead to an increase in the energy demand by 10% and 27% respectively. Furthermore, extreme climate conditions will increase energy demand by 20%, which will lead to an increment in the levelized cost of energy infrastructure by 40%. Finally, it is shown that co-optimization of both urban morphology and energy system will guarantee climate resilience of urban energy systems with a minimum investment.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Annan naturresursteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Other Environmental Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Energisystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Energy Systems (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Marin teknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Marine Engineering (hsv//eng)

Nyckelord

Interconnected infrastructure
Urban form
Energy systems
Sustainable cities
Urban planning
Energy systems
Interconnected infrastructure
Sustainable cities
Urban form
Urban planning

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy