SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Petronis Sarunas 1972)
 

Search: WFRF:(Petronis Sarunas 1972) > (2010-2014) > Locally Functionali...

Locally Functionalized Short-Range Ordered Nanoplasmonic Pores for Bioanalytical Sensing

Jonsson, Magnus, 1981 (author)
Chalmers tekniska högskola,Chalmers University of Technology,Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
Dahlin, Andreas, 1980 (author)
Chalmers tekniska högskola,Chalmers University of Technology,Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
Feuz, Laurent, 1975 (author)
Chalmers tekniska högskola,Chalmers University of Technology,Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
show more...
Petronis, Sarunas, 1972 (author)
Chalmers tekniska högskola,Chalmers University of Technology,Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
Höök, Fredrik, 1966 (author)
Chalmers tekniska högskola,Chalmers University of Technology,Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
show less...
 (creator_code:org_t)
2010-02-03
2010
English.
In: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 82:5, s. 2087-2094
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Nanoplasmonic sensors based on short-range ordered nano-holes in thin metal films and discrete metal nanoparticles are known to provide similar sensing performance. However, a perforated metal film is unique in the sense that the holes can be designed to penetrate through the substrate, thereby also fulfilling the role of nanofluidic channels. This paper presents a bioanalytical sensing concept based on short-range ordered nanoplasmonic pores (diameter 150 nm) penetrating through a thin (around 250 nm) multilayer membrane composed of gold and silicon nitride (SiN) that is Supported on a Si wafer. Also, a fabrication scheme that enables parallel production of multiple (more than 50) separate sensor chips or more than 1000 separate nanoplasmonic membranes on it single wafer is presented. Together with the localization of the sensitivity to within such short-range ordered nanoholes, the structure provides it two-dimensional nanofluidic network, sized in the order of 100 x 100 mu m(2), with nanoplasmon active regions localized to each individual nanochannel. A material-specific surface-modification scheme was developed to promote specific binding of target molecules on the optically active gold regions only, while suppressing nonspecific adsorption on SiN. Using this protocol, and by monitoring the temporal variation in the plasmon resonance of the structure, we demonstrate flow-through nanoplasmonic sensing of specific biorecognition reactions with a signal-to-noise ratio of around 50 at a temporal resolution below 190 ms. With flow, the uptake was demonstrated to be at least 1 order of magnitude faster than under stagnant conditions, while still keeping the sample consumption at a minimum.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Kemiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Chemical Engineering (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biofysik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biophysics (hsv//eng)

Keyword

gold-films
quartz-crystal microbalance
thin
nanoholes
protein adsorption
light
surface-plasmon resonance
biosensors
oxide surfaces
nanometric holes
diffraction

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view