SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Hansson Niklas 1992)
 

Sökning: WFRF:(Hansson Niklas 1992) > Oxidative dissoluti...

Oxidative dissolution of UO2 by α-radiolysis

Hansson, Niklas, 1992 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
ISBN 9789179056827
Gothenburg, 2022
Engelska.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • To prevent the spread of radiotoxic nuclides in the environment, spent nuclear fuel generated by decades of nuclear power operation must be safely stored for at least 100 000 years. The KBS-3 method is a highly developed deep geological repository concept and is the first final repository design for high-level nuclear waste to be constructed. It contains a number of engineered barriers designed to prevent groundwater from coming into contact with the spent nuclear fuel. However, the consequences of groundwater coming into contact with the fuel must be considered when assessing the safety of this repository concept. After ~1000 years, the initially dominant γ-emitting elements have largely decayed, and the α-emitters dominate the radiation field. At the fuel-water interface, the fuel’s strong α-radiation field causes extensive radiolysis, creating locally oxidizing conditions. The oxidants formed can cause oxidation of the UO2 matrix from the U(IV) state to the U(VI) state, significantly increasing its solubility in the process. The water intrusion also leads to anoxic corrosion of the iron inserts, forming large amounts of H2 in the process. This process has been shown to protect nuclear fuel against oxidative dissolution. The oxidative dissolution of UO2-based materials has been experimentally studied and modelled in this work. Oxidation and dissolution of UO2 pellets were studied under an external irradiation source, in both Ar and H2 atmospheres. In the Ar atmosphere, the oxidation of UO2 was shown to take place through the incorporation of a significant U(V) oxidation state fraction. In the H2 atmosphere, the surface was protected during exposure to the external irradiation source against both surface oxidation and dissolution. Very low dissolution yields were found in the study of SIMFUEL, with H2 catalytically activated on the pellet surface, efficiently causing catalytic decomposition of H2O2 without leading to oxidative dissolution of the UO2 matrix. Highly Pu-doped MOX pellets showed a strong oxidative dissolution in the Ar atmosphere. This was somewhat mitigated in the D2 atmosphere. The modelled data were shown to accurately replicate the experimental results. Dissolved U(VI) was shown to be strongly reductively precipitated on corroding iron foils under anoxic conditions. This decreased the initially dissolved concentrations by three orders of magnitude over relatively short periods. This work furthers the understanding of oxidative dissolution of UO2-based materials under α-radiation fields and the effect of reducing agents present in the canister.

Ämnesord

NATURVETENSKAP  -- Kemi -- Oorganisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Inorganic Chemistry (hsv//eng)
NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)
NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Nyckelord

hydrogen effect
kinetics
MOX
α-radiolysis
dose rate
UO2
ε-particles

Publikations- och innehållstyp

dok (ämneskategori)
vet (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Hansson, Niklas, ...
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Kemi
och Oorganisk kemi
NATURVETENSKAP
NATURVETENSKAP
och Kemi
och Materialkemi
NATURVETENSKAP
NATURVETENSKAP
och Kemi
Av lärosätet
Chalmers tekniska högskola

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy