SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Stake Jan 1971)
 

Search: WFRF:(Stake Jan 1971) > Graphene field-effe...

Graphene field-effect transistors for high frequency applications

Asad, Muhammad, 1986 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Bonmann, Marlene, 1988 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Yang, Xinxin, 1988 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Vorobiev, Andrei, 1963 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Stake, Jan, 1971 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Banszerus, Luca (author)
Rheinisch-Westfaelische Technische Hochschule Aachen,RWTH Aachen University
Stampfer, Christoph (author)
Rheinisch-Westfaelische Technische Hochschule Aachen,RWTH Aachen University
Otto, Martin (author)
Gesellschaft fur Angewandte Mikro- und Optoelektronik mit Beschrankterhaftung GmbH (AMO),AMO GmbH
Neumaier, Daniel (author)
Gesellschaft fur Angewandte Mikro- und Optoelektronik mit Beschrankterhaftung GmbH (AMO),AMO GmbH
show less...
 (creator_code:org_t)
2018
2018
English.
In: ; November 2018
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • Realization of competitive high frequency graphene field-effect transistors (GFETs) is hindered, in particular, by extrinsic scattering of charge carriers and relatively high contact resistance of the graphene-metal contacts, which are both defined by the quality of the corresponding graphene top interfaces [1]. In this work, we report on improved performance of GFETs fabricated using high quality chemical vapour deposition (CVD) graphene and modified technology steps. The modified processing flow starts with formation of the gate dielectric, which allows for preserving the high velocity of charge carriers, and, simultaneously, providing very low contact resistance. The transfer line method (TLM) analysis and fitting the GFET transfer characteristics (Fig. 1) both reveal very low specific width contact resistivity of the top contacts, down to 95 Ω⋅μm. Fitting shows also that the field-effect mobility in the GFETs can be up to 5000 cm2/(V⋅s). The measured (extrinsic) transit frequency (fT) and the maximum frequency of oscillation (fmax) are up to 35 GHz and 40 GHz, respectively, for GFETs with gate length Lg=0.5 μm (Fig. 2), which are highest among those reported so far for the GFETs with similar gate length and comparable with those of Si MOSFETs [2,3]. The dependencies of the fT and fmax on the gate length indicate that these GFETs are very promising for the scaling down and in particular for the development of power amplifiers operating in the mm-wave frequency range.

Subject headings

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Nanoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Nano-technology (hsv//eng)

Publication and Content Type

kon (subject category)
ref (subject category)

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view