SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Jing Peng)
 

Search: WFRF:(Jing Peng) > (2015-2019) > A study on correlat...

A study on correlation of pedestrian head injuries with physical parameters using in-depth traffic accident data and mathematical models

Huang, Jing (author)
Hunan University
Peng, Yong (author)
Central South University
Yang, Jikuang, 1948 (author)
Hunan University,Chalmers tekniska högskola,Chalmers University of Technology
show more...
Otte, Dietmar (author)
Medizinische Hochschule Hannover (MHH),Hannover Medical School (MHH)
Wang, Bingyu (author)
Xiamen University of Technology
show less...
 (creator_code:org_t)
Elsevier BV, 2018
2018
English.
In: Accident Analysis and Prevention. - : Elsevier BV. - 0001-4575. ; 119, s. 91-103
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The objective of the present study is to predict brain injuries and injury severities from realworld traffic accidents via in-depth investigation of head impact responses, injuries and brain injury tolerances. Firstly, a total of 43 passenger car versus adult pedestrian accidents were selected from two databases of the In-depth Investigation of Vehicle Accidents in Changsha of China (IVAC) and the German In-Depth Accident Study (GIDAS). In a previous study the 43 accidents were reconstructed by using the multi-body system (MBS) model (Peng et al., 2013a) for determining the initial conditions of the head-windscreen impact in each accident. Then, a study of the head injuries and injury mechanisms is carried out via 43 finite element (FE) modelings of a head strike to a windscreen, in which the boundary and loading conditions are defined according to results from accident reconstructions, including impact velocity, position and orientation of the head FE model. The brain dynamic responses were calculated for the physical parameters of the coup/countercoup pressure, von Mises and maximum shear stresses at the cerebrum, the callosum, the cerebellum and the brain stem. In addition, head injury criteria, including the cumulative strain damage measure (CSDM) (with tissue level strain threshold 0.20) and the dilatational damage measure (DDM), were developed in order to predict the diffuse axonal injury (DAI) and contusions, respectively. The correlations between calculated parameters and brain injuries were determined via comparing the simulation results with the observed injuries in accident data. The regression models were developed for predicting the injury risks in terms of the brain dynamic responses and the calculated CSDM and DDM values. The results indicate that the predicted values of 50% probability causing head injuries in the Abbreviated Injury Scale (AIS) 2+ correspond to coup pressure 167 kPa, countercoup pressure −117 kPa, von Mises 16.3 kPa and shear stress 7.9 kPa respectively, and causing AIS 3+ head injuries were 227 kPa, −169 kPa, 24.2 kPa and 12.2 kPa respectively. The results also suggest that a 50% probability of contusions corresponds to CSDM value of 48% at strain levels of 0.2, and the 50% probability of contusions corresponds to a DDM value of 6.7%.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Samhällsbyggnadsteknik -- Transportteknik och logistik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Civil Engineering -- Transport Systems and Logistics (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Hälsovetenskap -- Arbetsmedicin och miljömedicin (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Health Sciences -- Occupational Health and Environmental Health (hsv//eng)

Keyword

Human head FE model
Brain injury mechanism
Reconstruction
Pedestrian safety
Traffic accident
Tolerance threshold

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Huang, Jing
Peng, Yong
Yang, Jikuang, 1 ...
Otte, Dietmar
Wang, Bingyu
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Civil Engineerin ...
and Transport System ...
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Health Sciences
and Occupational Hea ...
Articles in the publication
Accident Analysi ...
By the university
Chalmers University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view