SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Sugrue M)
 

Search: WFRF:(Sugrue M) > Three-Dimensional P...

Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium

Pedrotty, Dawn M. (author)
University of Pennsylvania
Kuzmenko, Volodymyr, 1987 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Karabulut, Erdem, 1983 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Sugrue, Alan M. (author)
Livia, Christopher (author)
Vaidya, Vaibhav R. (author)
McLeod, Christopher J. (author)
Asirvatham, Samuel J. (author)
Gatenholm, Paul, 1956 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Kapa, Suraj (author)
show less...
 (creator_code:org_t)
2019
2019
English.
In: Circulation: Arrhythmia and Electrophysiology. - 1941-3149 .- 1941-3084. ; 12:3
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • BACKGROUND: Reentrant ventricular arrhythmias are a major cause of sudden death in patients with structural heart disease. Current treatments focus on electrically homogenizing regions of scar contributing to ventricular arrhythmia with ablation or altering conductive properties using antiarrhythmic drugs. The high conductivity of carbon nanotubes may allow restoration of conduction in regions where impaired electrical conduction results in functional abnormalities. We propose a new concept for arrhythmia treatment using a stretchable, flexible biopatch with conductive properties to attempt to restore conduction across regions in which activation is disrupted. METHODS: Carbon nanotube patches composed of nanofibrillated cellulose/single-walled carbon nanotube ink 3-dimensionally printed in conductive patterns onto bacterial nanocellulose were developed and evaluated for conductivity, flexibility, and mechanical properties. The patches were applied on 6 canines to epicardium before and after surgical disruption. Electroanatomic mapping was performed on normal epicardium, then repeated over surgically disrupted epicardium, and then finally with the patch applied passively. RESULTS: We developed a 3-dimensional printable carbon nanotube ink complexed on bacterial nanocellulose that was (1) expressable through 3-dimensional printer nozzles, (2) electrically conductive, (3) flexible, and (4) stretchable. Six canines underwent thoracotomy, and, during epicardial ventricular pacing, mapping was performed. We demonstrated disruption of conduction after surgical incision in all 6 canines based on activation mapping. The patch resulted in restored conduction based on mapping and assessment of conduction direction and velocities in all canines. CONCLUSIONS: We have demonstrated 3-dimensional custom-printed electrically conductive carbon nanotube patches can be surgically manipulated to improve cardiac conduction when passively applied to surgically disrupted epicardial myocardium in canines.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Textil-, gummi- och polymermaterial (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Textile, Rubber and Polymeric Materials (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Biomedicinsk laboratorievetenskap/teknologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Biomedical Laboratory Science/Technology (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Kompositmaterial och -teknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Composite Science and Engineering (hsv//eng)

Keyword

ink
electrophysiology
mapping
nanotubes, carbon

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view