SwePub
Sök i LIBRIS databas

  Extended search

L773:0749 6419 OR L773:1879 2154
 

Search: L773:0749 6419 OR L773:1879 2154 > Computational model...

Computational modelling of dissipative open-cell cellular solids at finite deformations

Hård af Segerstad, Per, 1977 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Toll, Staffan, 1964 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Larsson, Ragnar, 1960 (author)
Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
Elsevier BV, 2009
2009
English.
In: International Journal of Plasticity. - : Elsevier BV. - 0749-6419 .- 1879-2154. ; 25:5, s. 802-821
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • This study concerns the constitutive modelling of dissipative open-cell structural cellular solids under primarily finite compressive deformations and the corresponding non-linear finite element implementation. A thermodynamically consistent, mechanistic approach presented in Hard of Segerstad et al. [Hard of Segerstad, P., Larsson, R., Toll, S., 2008. A constitutive equation for open-cell cellular solids, including viscoplasticity, damage and deformation induced anisotropy. International Journal of Plasticity. 24, 896-914.] is adopted for modelling the initial linear-elastic response and the subsequent plateau behaviour. In these regions the cellular solid is considered as a network of struts, where each strut connects two vertex points. A hypothesis is proposed that the vertex points move affinely in the finite strain regime, where the struts buckle plastically. The strut deformation is further assumed to be one-dimensional and depend directly on the macroscopic deformation; thus the description of the strut response requires only a scalar valued response function. Owing to this simple ansatz, the introduction of multiple non-linear mechanisms, such as hyperelasto-viscoplasticity and damage becomes feasible for large scale computations. An additional hyperelastic volumetric response, activated near the point-of-compaction, is introduced for two reasons, (i) to capture the stiffness recovery at high compressive volumetric deformations, where the struts come into contact, and (ii) to prevent numerical instability. The model is implemented as a user defined constitutive driver in the implicit version of the finite element code ABAQUS and tested experimentally for an open-cell aluminium alloy foam (Duocel 6101-0,40 ppi). All material parameters are determined by a simple compression test, and subsequently used to simulate the indentation of a rigid sphere into a foam cylinder. The model accurately captures the experimental load-displacement relation and the deformed geometry. (C) 2008 Elsevier Ltd. All rights reserved.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Annan materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Other Materials Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Teknisk mekanik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Applied Mechanics (hsv//eng)

Keyword

mechanisms
static crush
damage
Experiments
dominant combined loads
FEM
constitutive equation
induced anisotropy
Cellular solids
Finite deformations
aluminum honeycomb specimens
behavior
plasticity
Foams
foams

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view