SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Liu Helena)
 

Search: WFRF:(Liu Helena) > (2005-2009) > Oxidation of FeCrAl...

Abstract Subject headings
Close  
  • High temperature resistant FeCrAl alloys are frequently used in high temperature applications Such as heating elements and metal based catalytic converter bodies. When exposed to high temperatures an adherent, slowly growing, dense aluminium oxide layer forms on the surface, which protects the underlying alloy from severe degradation. The composition, structure and properties of the formed oxide layer are strongly dependent on the alloy composition, temperature and oxidation environment. In this study, the Sandvik 0C404 FeCrAl alloy, in the form of 50 mu m thick foils, was exposed isothermally in the temperature range 500-900 degrees C for 168 hours in dry O-2 and in O-2 with 40 vol.% H2O. The surface morphology, composition and microstructure of the grown oxide scales were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), grazing incidence X-ray diffraction (GI-XRD), Auger electron spectroscopy (AES), and time of flight secondary ion mass spectrometry (TOF-SIMS). The oxidation process was faster at 900 degrees C than at 500 and 700 degrees C. At 500 degrees C a thin (10-20 nm) mixed oxide of Fe, Cr and Al was formed. Exposure at 700 degrees C resulted ill a similar (40-50 nm) duplex oxide, in both dry O-2 and in O-2 With 40 vol.% H2O. These oxide scales consisted of all inner and an outer relatively pure alumina separated by a Cr-rich band. This type of duplex oxide scale also formed at 900 degrees C with a thin inward growing alpha-Al2O3 at the oxide/metal interface and an outward growing layer outside a Cr-rich band. However, at 900 degrees C the Outward growing layer showed two types of oxide morphologies; a thin smooth base oxide and a much thicker nodular oxide grown on top of substrate ridges. In dry O-2 atmosphere, the main part of this outward growing layer had transformed to alpha-Al2O3. Only in the outer part of the thick oxide nodules, metastable alumina was found. When exposed in the presence of water vapour the main pall of the metastable alumina remained untransformed.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Annan teknik -- Övrig annan teknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Other Engineering and Technologies -- Other Engineering and Technologies not elsewhere specified (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Keyword

steel
oxide layers
FeCrAl foils
growth
alloy kanthal af
high-temperature oxidation
900 degrees-c
water-vapor
heating elements
behavior
forming alloys

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view