SwePub
Sök i LIBRIS databas

  Extended search

L773:1741 2560 OR L773:1741 2552
 

Search: L773:1741 2560 OR L773:1741 2552 > (2020-2024) > Chronic stability o...

Chronic stability of a neuroprosthesis comprising multiple adjacent Utah arrays in monkeys

Chen, Xing (author)
Netherlands Institute for Neuroscience NIN - KNAW,University of Pittsburgh
Wang, Feng (author)
Netherlands Institute for Neuroscience NIN - KNAW
Kooijmans, Roxana (author)
Netherlands Institute for Neuroscience NIN - KNAW
show more...
Klink, Peter Christiaan (author)
Netherlands Institute for Neuroscience NIN - KNAW,Universiteit Utrecht,Utrecht University,Sorbonne Université,Sorbonne University
Boehler, Christian (author)
Albert-Ludwigs-Universität Freiburg,University of Freiburg
Asplund, Maria, 1978 (author)
Albert-Ludwigs-Universität Freiburg,University of Freiburg,Chalmers tekniska högskola,Chalmers University of Technology
Roelfsema, Pieter Roelf (author)
Netherlands Institute for Neuroscience NIN - KNAW,Vrije Universiteit Amsterdam (VU),Sorbonne Université,Sorbonne University,Academic Medical Centre (AMC)
show less...
 (creator_code:org_t)
2023
2023
English.
In: Journal of Neural Engineering. - 1741-2560 .- 1741-2552. ; 20:3
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Objective. Electrical stimulation of visual cortex via a neuroprosthesis induces the perception of dots of light ('phosphenes'), potentially allowing recognition of simple shapes even after decades of blindness. However, restoration of functional vision requires large numbers of electrodes, and chronic, clinical implantation of intracortical electrodes in the visual cortex has only been achieved using devices of up to 96 channels. We evaluated the efficacy and stability of a 1024-channel neuroprosthesis system in non-human primates (NHPs) over more than 3 years to assess its suitability for long-term vision restoration. Approach. We implanted 16 microelectrode arrays (Utah arrays) consisting of 8 x 8 electrodes with iridium oxide tips in the primary visual cortex (V1) and visual area 4 (V4) of two sighted macaques. We monitored the animals' health and measured electrode impedances and neuronal signal quality by calculating signal-to-noise ratios of visually driven neuronal activity, peak-to-peak voltages of the waveforms of action potentials, and the number of channels with high-amplitude signals. We delivered cortical microstimulation and determined the minimum current that could be perceived, monitoring the number of channels that successfully yielded phosphenes. We also examined the influence of the implant on a visual task after 2-3 years of implantation and determined the integrity of the brain tissue with a histological analysis 3-3.5 years post-implantation. Main results. The monkeys remained healthy throughout the implantation period and the device retained its mechanical integrity and electrical conductivity. However, we observed decreasing signal quality with time, declining numbers of phosphene-evoking electrodes, decreases in electrode impedances, and impaired performance on a visual task at visual field locations corresponding to implanted cortical regions. Current thresholds increased with time in one of the two animals. The histological analysis revealed encapsulation of arrays and cortical degeneration. Scanning electron microscopy on one array revealed degradation of IrOx coating and higher impedances for electrodes with broken tips. Significance. Long-term implantation of a high-channel-count device in NHP visual cortex was accompanied by deformation of cortical tissue and decreased stimulation efficacy and signal quality over time. We conclude that improvements in device biocompatibility and/or refinement of implantation techniques are needed before future clinical use is feasible.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Neurovetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Neurosciences (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Biomaterialvetenskap (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Biomaterials Science (hsv//eng)

Keyword

V4
microstimulation
blindness
Utah arrays
V1
neuroprosthesis
non-human primate

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view