SwePub
Sök i LIBRIS databas

  Extended search

AMNE:(ENGINEERING AND TECHNOLOGY Industrial Biotechnology Biochemicals)
 

Search: AMNE:(ENGINEERING AND TECHNOLOGY Industrial Biotechnology Biochemicals) > (2015-2019) > Biobased Adipic Aci...

Biobased Adipic Acid - Challenges in Establishing a Cell Factory

Skoog, Emma, 1983 (author)
Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
ISBN 9789179051280
Gothenburg, 2019
English.
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Growing concern regarding climate change calls for sustainable solutions to significantly reduce our dependency on non-renewable fossil-based raw materials. One potential solution is the development of biorefineries where biobased, renewable raw materials are converted into valuable products via enzymatic, chemical or microbial conversion. This work focuses on the microbial production of adipic acid, a precursor in the nylon industry, currently derived from fossil-based raw material. No known naturally occurring microorganism is able to produce adipic acid, and genetic engineering of a suitable host is therefore required. The aim of the work presented in this thesis was to engineer a microorganism for the production of adipic acid from glucose, more specifically, from glucose streams derived from lignocellulosic forest residues. Theoretical evaluation of metabolic pathways for adipic acid production revealed several obstacles, including redox imbalance and the discovery or engineering of enzymes to catalyze novel reactions. Mining of enzyme databases for alternative paths proved fruitful, and the number of biochemical reactions in the lysine pathway employing as yet unidentified enzymes was reduced from three to two, without affecting the thermo­dynamics of the pathway. A combined approach of in vitro and in silico analysis suggested potential enzyme engineering strategies for one of the reactions, for which there are as yet no identified enzymes, namely, the reduction of unsaturated α,β bonds of 6-aminohex-2-enoic acid and 2-hexenedioic acid. When defining a suitable host for microbial adipic acid production, tolerance to high concentrations of adipic acid (50-100 g L-1) is important to ensure an economically feasible process, preferably at low pH (below 5) to further reduce the overall process cost. Screening of bacteria, yeasts and a filamentous fungus grown in increasing concentrations of adipic acid (0-100 g L-1) and at different pH revealed Candida viswanathii to be a promising host to engineer for adipic acid production. A comparative study of C. viswanathii with Saccharomyces cerevisiae in controlled batch cultivations at increasing adipic acid concentrations (0-95 g L-1) and low pH (pH 4 and pH 5) revealed significant differences in their tolerance to adipic acid; C. viswanathii being able to grow, almost unaffected, under all the conditions investigated, whereas S. cerevisiae was unable to grow at 95 g L-1. Lipid analysis of their cell membranes revealed C. viswanathii to have a thicker and more compact cell membrane, which is probably less permeable to adipic acid.

Subject headings

NATURVETENSKAP  -- Biologi -- Cellbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Cell Biology (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Industriell bioteknik -- Biokemikalier (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Industrial Biotechnology -- Biochemicals (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biofysik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biophysics (hsv//eng)
NATURVETENSKAP  -- Biologi -- Mikrobiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Microbiology (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Industriell bioteknik -- Biokatalys och enzymteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Industrial Biotechnology -- Biocatalysis and Enzyme Technology (hsv//eng)

Keyword

2-hexenedioic acid
enzyme engineering
6-aminohex-2-enoic acid
S. cerevisiae
adipic acid pathway via lysine
cell factory
C. viswanathii
lignocellulose
biorefinery
tolerance
in silico docking
adipic acid

Publication and Content Type

dok (subject category)
vet (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view