SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Jewett Michael C.)
 

Sökning: WFRF:(Jewett Michael C.) > The genome-scale me...

The genome-scale metabolic model ilN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism

Nookaew, Intawat, 1977 (författare)
King Mongkut's University of Technology Thonburi
Jewett, Michael C (författare)
Danmarks Tekniske Universitet,Technical University of Denmark,Harvard Medical School
Meechai, Asawin (författare)
King Mongkut's University of Technology Thonburi
visa fler...
Thammarongtham, Chinae (författare)
King Mongkut's University of Technology Thonburi
Laoteng, K. (författare)
King Mongkut's University of Technology Thonburi
Cheevadhanarak, S. (författare)
King Mongkut's University of Technology Thonburi
Nielsen, Jens B, 1962 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Bhumiratana, S. (författare)
Thailand National Science and Technology Development Agency,King Mongkut's University of Technology Thonburi
visa färre...
 (creator_code:org_t)
2008-08-07
2008
Engelska.
Ingår i: BMC Systems Biology. - : Springer Science and Business Media LLC. - 1752-0509. ; 2:71
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Background: Up to now, there have been three published versions of a yeast genome-scale metabolic model: iFF708, iND750 and iLL672. All three models, however, lack a detailed description of lipid metabolism and thus are unable to be used as integrated scaffolds for gaining insights into lipid metabolism from multilevel omic measurement technologies (e.g. genome-wide mRNA levels). To overcome this limitation, we reconstructed a new version of the Saccharomyces cerevisiae genome-scale model, ilN800 that includes a more rigorous and detailed descrition of lipid metabolism. Results: The reconstructed metabolic model comprises 1446 reactions and 1013 metabolites. Beyond incorporating new reactions involved in lipid metabolism, we also present new biomass equations that improve the predictive power of flux balance analysis simulations. Predictions of both growth capability and large scale in silico single gene deletions by ilN800 were consistent with experimental data. In addition, 13C-labeling experiments validated the new biomass equations and calculated intracellular fluxes. To demonstrate the applicability of ilN800, we show that the model can be used as a scaffold to reveal the regulatory importance of lipid metabolism precursors and intermediates that would have been missed in previous models from transcriptome datasets. Conclusions: Performing integrated analyses using ilN800 as a network scaffold is shown to be a valuable tool for elucidating the behavior of complex metabolic networks, particularly for identifying regulatory targets in lipid metabolism that can be used for industrial applications or for understanding lipid disease states.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Industriell bioteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Industrial Biotechnology (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy