SwePub
Sök i LIBRIS databas

  Utökad sökning

L773:1941 0115 OR L773:1932 4529
 

Sökning: L773:1941 0115 OR L773:1932 4529 > Model Order Reducti...

Model Order Reduction Techniques for Physics-Based Lithium-ion Battery Management: A Survey

Li, Yang, 1984 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Karunathilake, Dulmini (författare)
Queensland University of Technology (QUT)
Vilathgamuwa, D. Mahinda (författare)
Queensland University of Technology (QUT)
visa fler...
Mishra, Yateendra (författare)
Queensland University of Technology (QUT)
Farrell, Troy W. (författare)
Queensland University of Technology (QUT)
Choi, San Shing (författare)
Queensland University of Technology (QUT)
Zou, Changfu, 1987 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa färre...
 (creator_code:org_t)
2022
2022
Engelska.
Ingår i: IEEE Industrial Electronics Magazine. - 1941-0115 .- 1932-4529. ; 16:3, s. 36-51
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • To unlock the promise of electrified transportation and smart grid, emerging advanced battery management systems (BMSs) shall play an important role in health-aware monitoring, diagnosis, and control of widely used lithium-ion (Li-ion) batteries. Sophisticated physics-based battery models incorporated in the advanced BMS can offer valuable battery internal information to achieve improved operational safety, reliability and efficiency, and to extend the lifetime of the batteries. However, developed from the fundamental electrochemical and thermodynamic principles, the rigorous physics-based models are saddled with exceedingly high cognitive and computational complexity for practical applications. This article reviews prevailing order reduction techniques of physics-based Li-ion battery models to facilitate the development of next-generation BMSs. We analyze and comparatively characterize these techniques, mainly from perspectives of model fidelity, computational efficiency, and the scope of applications. By representing many effective and flexible reduced-order models as equivalent circuits, designers and practitioners, who do not have electrochemical expertise but with knowledge of circuit theory, can readily gain insights into multi-physical dynamics as well as their coupling effects inside the batteries. In addition, recommendations are made on how to select appropriate physics-based models for various model-based applications in battery management. Finally, the prospect of physical model-enabled BMSs is discussed, including the potential challenges and future research directions.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Annan teknik -- Övrig annan teknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Other Engineering and Technologies -- Other Engineering and Technologies not elsewhere specified (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Nyckelord

battericeller
battery management
energy storage
Energy systems modelling
electrochemical model
lithium-ion batteries
Modelling
model order reduction

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy