SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Matic Aleksandar 1968)
 

Search: WFRF:(Matic Aleksandar 1968) > Stabilizing the Per...

Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration

Agostini, Marco, 1987 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Lim, Du Hyun, 1983 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Sadd, Matthew, 1994 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Fasciani, Chiara (author)
Fondazione Istituto Italiano di Tecnologia
Navarra, M.A. (author)
Universita degli Studi di Roma la Sapienza,Sapienza University of Rome
Panero, Stefania (author)
Universita degli Studi di Roma la Sapienza,Sapienza University of Rome
Brutti, Sergio (author)
Universita degli Studi della Basilicata,University of Basilicata
Matic, Aleksandar, 1968 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Scrosati, B (author)
Fondazione Istituto Italiano di Tecnologia
show less...
 (creator_code:org_t)
2017-08-16
2017
English.
In: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 10:17, s. 3490-3496
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium–sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g?1) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur–carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy.

Subject headings

NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Energisystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Energy Systems (hsv//eng)

Keyword

gel polymer electrolytes
energy storage
raman spectroscopy
batteries
sulfur

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view