SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Eriksson Lars Erik 1950)
 

Search: WFRF:(Eriksson Lars Erik 1950) > (2015-2019) > Optimized Reduced C...

Optimized Reduced Chemistry and Molecular Transport for Large Eddy Simulation of Partially Premixed Combustion in a Gas Turbine

Abou-Taouk, Abdallah, 1982 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Farcy, Benjamin (author)
Domingo, Pascale (author)
show more...
Vervisch, Luc (author)
Sadasivuni, Suresh (author)
Siemens Industrial Turbomachinery Ltd.
Eriksson, Lars-Erik, 1950 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
Chalmers tekniska högskola Siemens Industrial Turbomachinery Ltd (creator_code:org_t)
2015-07-29
2016
English.
In: Combustion Science and Technology. - : Informa UK Limited. - 0010-2202 .- 1563-521X. ; 188:1, s. 21-39
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • A methodology is discussed to automatically determine the parameters of closed budget equations for chemical species mass fractions and energy, in order to simulate spatially filtered flames as required in large eddy simulation (LES). The method accounts for the effects of LES filtering on chemistry and transport by simultaneously optimizing, for a reduced number of species, the Arrhenius reaction rates and a correction to mixture-averaged molecular diffusion coefficients. The objective is to match, for a given filter size, spatially filtered canonical one-dimensional flames simulated with detailed chemistry solutions. This approach is designed for quite well-resolved LES, in which most of the unresolved fluctuations result from flame thickening due to spatial filtering, thus featuring weak levels of sub-grid scale flame wrinkling. Methane-air partially premixed combustion is addressed. A four-step reduced reaction mechanism involving seven species is developed along with mass and heat molecular transport properties. The optimization is performed at atmospheric pressure and at 3 bar, for ranges of fresh gas temperatures [300–650 K] and equivalence ratios [0.4–1.2]. Comparisons with the filtered detailed chemistry solution of a planar propagating front show that the laminar flame speed, the adiabatic flame temperature, the species profiles in the reaction zone, and the flow chemical composition and temperature at equilibrium are adequately predicted. The new sub-grid scale modeling approach is then applied to three-dimensional LES of an industrial gas turbine burner. Good agreement is found between the quantities predicted with LES and experimental data, in terms of flow and flame dynamics, axial velocities, averaged temperatures, and some major species concentrations. Results are also improved compared to previous simulations of the same burner.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Keyword

flame filtering optimization
swirling flames
large eddy simulation
partially premixed turbulent flames
Chemistry reduction

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view