SwePub
Sök i LIBRIS databas

  Utökad sökning

LAR1:cth
 

Sökning: LAR1:cth > (2020-2025) > Assessment of Wind ...

Assessment of Wind Field Generation Methods on Predicted Wind Turbine Power Production Using a Free Vortex Filament Wake Approach

Abedi, Hamidreza, 1979 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Nebenführ, Bastian, 1984 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Davidson, Lars, 1957 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
2022-01-11
2022
Engelska.
Ingår i: Journal of Solar Energy Engineering, Transactions of the ASME. - : ASME International. - 1528-8986 .- 0199-6231. ; 144:2
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The generated power and thrust of a wind turbine strongly depend on the flow field around the turbine. In the present study, three different inflow methods, i.e., a time series (TS) from large eddy simulation (LES) of atmospheric boundary layer flow field, a synthetic turbulent flow field using the Mann model (MM), and a steady-state mean wind profile with shear, are integrated with the free vortex filament wake method to investigate the effect of wind field generation methods on the wind turbine performance where the impact of the turbine and the trailing wake vortices on the turbulent flow fields is ignored. For this purpose, an in-house vortex lattice free wake (VLFW) code is developed and used to predict the aerodynamic loads on rotor blades. The NREL 5-MW reference wind turbine is used for the VLFW simulations. For a fair assessment of different inflow generation methods on power production of a wind turbine, it is not sufficient that the generated wind fields employed in the TS and MM methods have the same streamwise mean velocity and turbulence intensity at hub height. Instead, the generated inflows must have equivalent power-spectral densities especially at low frequencies since the rotor blades essentially respond to the large-scale fluctuations (macroscopic scales) rather than small-scale fluctuations (microscopic scales). A faster energy decay rate of LES inflow leads to a higher energy content in the TS method at low frequencies (associated with the macroscopic dynamics of the rotor blades). This extra kinetic energy results in a slightly higher mean power production while using the TS method although the inflow conditions at hub height/rotor plane are the same for both the TS and MM methods. Moreover, the impact of simulation time (the length of time integration) on the power production of a wind turbine (exposed to an unsteady inflow) must be taken into account. A short simulation time remarkably affects the mean wind speed over the rotor area for identical turbulent inflows. For Taylor's hypothesis application using a single LES flow field, the results show a significant difference in the mean powers corresponding to the different realizations due to large turbulent fluctuations.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Nyckelord

wind turbine
turbulence
vortex methods
panel method
vortex filaments

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy